

Thompson's construction

● Thompson's construction provides a rule for NFAs based
on a single letter regular expression, e.g. one for a regex
that was simply “A”, another NFA for the regex “B”, etc

● It provides a construction rule for each of the core RE
operations: concatenation (e.g. AB), kleene star (e.g. A*),
alternation/or (e.g. A|B)

● It specifies a precedence order for those operations
● Successive applications of the constructions (following the

precedence rules) let us build an NFA matching any regex

NFA for single letter, e.g. x

● Each machine will have a single start and single accept
state, simplest is for a single letter, assume any transition
not shown goes to a reject state

S1S0 x

NFA for concatenate, e.g. xy

● Given machines M1, M2 (just showing their start/accept
states), concatenation adds a single null transition from M1
to M2, M1's start is the new machines start, M2's accept is
the new machine's accept

S1 A1 S2 A2e

NFA for kleene star, e.g. x*

● Given machine M1, adds new start/accept states around
M1, and four new null transitions

e

S1 A1 A

e

e e
S

NFA for or, e.g x|y

● Given machines M1 and M2, to get M1 | M2 we need new
start and accept states and four new null transitions

e

S1 A1

S2 A2

A
S

e
e

e

Operation precedence

● Brackets have highest priority, then *, then concatenation,
and finally |

● Note that other regex operations can be represented as
combinations of the ones given, e.g. A+ would be
represented as AA*

e

Example: (0|1)*1

● First we do the 0|1 since it's in parenthesis, then the *,
then the concatenation, giving result below

e

0

1

1e

e

e

e

e

e

e

e

Lots of extra states

● The construction technique generates many more states
than if we came up with an ideal “by hand” version

● e.g. For the (0|1)*1 example all we need are two states as
shown below

● This is why our technique goes through a final
minimization stage later

AS 1
1

0

0

Example: (a|(a*ab)*)a*

● All transitions are nulls except the labelled a/b one

a a b

a

a

Creating a language recognizer

● Of course, we want to be able to recognize ALL the tokens
in a language, so we want an NFA that combines them all

● If we're given RE r1 for token type 1, r2 for token type 2,
etc, then a single regex to cover all the token types is r1 |
r2 | r3 | rk

● From that regex, we can apply Thompson's construction to
get an NFA for the full token set, but it assumes we're
consuming the whole string ... that's not enough for cases
where we want to handle a string that is a sequence of
tokens

Possible fixes for tokenizing

● require the tokens to be fully delimited – e.g. require
whitespace before/after every single token (usually seen
as overly restrictive/limiting)

● If the recognizer finished in a non-accepting state, have it
back up to a previous accept state that it 'passed through',
accept that as the token match then start looking for the
next token from that point

● Note that if we want to identify token types as well as
recognize them then accept states need to be labelled
(and treated as distinct) by the associated token type

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

