

References, quotes, and brackets

● Bash variable names act as references, with $ to
dereference or evaluate, e.g.

A=1 # assign 1 to A
B=$A # copy 1 into B
C=A # C is now also a reference to A
A=2 # change A’s value to 2
echo “$A, $B, $C, $(($C))” # prints 2, 1, A, 2

● Note that the $ can be applied to expressions in brackets to evaluate
them, e.g. $(command), $((mathexpression))

Single and double quotes

● Double quotes (weak quotes) allow interpretation of a string
contents, e.g. in “the value of x is $x” the $x gets replaced with
the current value of x

● Single quotes (strong quotes) prevent interpretation of
characters, e.g. in ‘the value of x is $x’ the $x does not get
intepretted, it really is the character $ followed by the character x

● The \’ inside single quotes DOES get interpretted, so we are able
to embed a single quote inside a single-quoted string

Square brackets in bash

● Square brackets in bash (and linux) can actually be used
as a stand-alone test (true/false) command, e.g.

[“foo” = “foo”]
● Most commonly seen as part of if statements, loops
● In fact, [is the (oddly named) command, the rest are args
● Old bash syntax also uses $[expr] for delimiting expression

evaluation, e.g. echo “$[$x]”, modern syntax is $((expr))

Double square brackets

● A generally more flexible conditional syntax is given by
double square brackets, e.g. [[expr]]

● We’ll see these later when we do compound boolean
expressions, regular expression comparisons, etc

Single round brackets

● $() can be used to run a command in a subshell of its own and
capture the output, e.g. x=$(foo)

● This is handy, in that if foo crashes then it only crashes the
subshell, it doesn’t also crash our current script

● Anything that foo tried to print to stdout actually goes into x
● If we want to capture the exit/return value of foo afterwards, we’ll

find it in the special variable $?
● Single round brackets will also be used for arrays, discussed later

Double round brackets

● Double round brackets are used to enclose integer math
operations in bash, and preceding with the $ sign lets use
capture the result, e.g.

a=3
b=4
a=$((41 / a + b--))
echo “$a” # displays 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

