Writing serious Perl: The absolute minimum you need to know http://www.netalive.org/tinkering/serious-perl/

Writing serious Perl
The absolute minimum you need to know

Perl's extremely flexible syntax makes it easy to write code that is harder to read and maintain than it could be. This article describes some very basic practices | consider necessary for a clear and
concise style of writing Perl.

Table of contents

¢ Namespaces
o Rooting a namespace
© Exporting symbols

¢ Instant data structures

e Classes and objects

o Constructors
Multiple constructors

Instance methods

Static methods

Inheritance

Strict instance attributes

A note on the uniform access principle
e Imports

o Import parameters
o Who's calling?

o Extending the language
o Essential resources
e Final words
¢ About the author

O O 0O o oo

Namespaces

One package should never mess with the namespace of another package unless it has been explicitly told to do so. Thus, never define methods in another script and require it in. Always wrap
your library in a package and use it. This way your namespaces will remain cleanly separated:

package Sophie;
sub say hello {
print "Hi World!";

10f 10 03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know http://www.netalive.org/tinkering/serious-perl/

package Clara;

use Sophie;

say hello();
Sophie->say hello();
Sophie::say hello();

Rooting a namespace

When you use an unloaded package Some: : Package, Perl looks for a file Some/Package. pm in the current directory. If this file doesn't exist, it looks for other namespace roots (like
c:/perl/1ib) in the global @INC array.

It is a good idea to save your application packages to a directory like 1ib and add that directory to the list of namespace roots using use 1ib 'my/root/path':

use lib 'lib‘';
use Some: :Package;
Exporting symbols

There are rare occasions when you do want to export methods or variable names into the calling package. | only do this occasionally for static helper methods | need very, very often. In order to export
symbols, inherit from the Exporter class and fill the @EXPORT array with the symbols you'd like to export:

package Util;
use base 'Exporter';
our @EXPORT = ('foo', 'bar');

sub foo {
print "foo!";
}
sub bar {
print "bar!";
}
package Amy;
use Util;
foo();
bar();

Try not to pollute another package's namespace unless you have a very good reason for doing so! Most packages on CPAN explicitly state which symbols get exported with their use, if any.

It might be a good idea to leave it up to the requiring package to decide which symbols get exported into its namespace. In that case you simply use the @EXPORT OK array instead or GEXPORT.

package Util;

20f 10 03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know

30f10

use base 'Exporter';

our @EXPORT_OK

sub foo {

print "foo!
}
sub bar {

print "bar!

package Amy;
use Util 'foo';
foo();

bar();

('foo', 'bar');

only import foo()

works fine
blows up

Instant data structures

http://www.netalive.org/tinkering/serious-perl/

Use { } to create anonymous hash references. Use [] to create anonymous array references. Combine these constructs to create more complex data structures such as lists of hashes:

my @students =

(

{ name => 'Clara’',
registration => 10405,
grades =12, 3, 2]

{ name => "Amy"',
registration => 47200,
grades = [1, 3, 11

{ name => 'Deborah’',
registration => 12022,
grades = [4, 4, 4]

Use -> to dereference the structure and get to the values:

print out names of all students
foreach my $student (@students) {

print $student->{name}

print out Clara's second grade

print $students[0]->{grades}->[1];

delete Clara's registration code

"\n";

delete $students[0]->{registration};

b

M‘\

)

’

03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know http://www.netalive.org/tinkering/serious-perl/

Classes and objects

Packages are classes. Objects are usually hash references bless-ed with a class name. Attributes are key/value pairs in that hash.
Constructors

Constructors are static methods that happen to return objects:

package Student;

sub new {
my($class, $name) = @ ;
my $self = { name => $name };
bless($self, $class);

return $self;

package main;

use Student;

my $amy = Student->new('Amy');
print $amy->{name};

Instead of Student->new('Amy') you may also write new Student('Amy'). Note however that the Perl parser relies on some funky heuristics to guess your true intentions and sometimes
guesses wrong.

Multiple constructors

Because the new keyword is in no way magical in Perl, you may have as many constructor methods as you like and give them any name you like. For instance, you might want different constructors
depending on whether you'd like to form an object from an existing record in a database, or create a new instance from scratch:

my $amy Student->existing('Amy"');
my $clara = Student->create();

As a constructor explicitly returns the constructed object, $self isn't magical either. You might, for example, retrieve $self from a static cache of already constructed objects:

package Coke;
my S%CACHE;

sub new {
my($class, $type) = @ ;

return $CACHE{$type} if $CACHE{S$type};
my $self = $class->from db($type);

4 0f 10 03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know

50f 10

$CACHE{$type} = $self;
return $self;

sub from db {

my ($class, $type) = @_;
my $self =

bless($self, $class);
return $self;

}

package main;

use Coke;

my $foo = Coke->new('Lemon');
my $bar = Coke->new('Vanilla');

my $baz = Coke->new('Lemon');

http://www.netalive.org/tinkering/serious-perl/

For the sake of completeness | should note that the references in sCACHE will keep cached objects alive even if all their other instances cease to exist. Thus, should your cached objects have

destructor methods defined, they won't be called until the program gets terminated.

Instance Methods

Instance methods get a reference to the called object in their first parameter:

package Student;

sub work {

}

my($self) = @_;

print "$self is working\n";

sub sleep {

my($self) = @_;

print "$self is sleeping\n";

package main;
use Student;

my $amy = Student->new('Amy');
$amy->work() ;
$amy->sleep();

03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know

The reference to itself (this in Java) is never implicit in Perl:

sub work {
my($self) =@ ;
sleep();
$self->sleep();

Static methods

Static methods get the name of the calling class in their first parameter. Constructors are simply static methods:

package Student;

sub new {
my($class, $name) = @ ;

}
sub list all {

my($class) = @_;

package main;
use Student;
Student->list all();

Instance methods can call static methods using $self->static method():

sub work {
my($self) = @ ;

$self->list all();

Inheritance

Inheritance works through use base 'Base::Class':

package Student::Busy;
use base 'Student';

6 0of 10

http://www.netalive.org/tinkering/serious-perl/

03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know http://www.netalive.org/tinkering/serious-perl/

my ($self) =
$self->work(

’

sub night shift {
)

sub sleep {
my($self) = @ ;

$self->night shift();

All classes automatically inherit some basic functionality like 1sa and can from the UNIVERSAL class. Also if you feel the urge to shoot yourself in the foot by using multiple inheritance, Perl is not
going to stop you.

Strict instance attributes

As our vanilla object is a simple hash reference, you may use any attribute name and Perl won't complain:

use Student;
my $amy = Student->new('Amy');
$amy->{gobbledegook} = 'some value';

Often you'd rather like to give a list of attributes that are allowed, and have Perl exit with an error if someone uses an unknown attribute. You do this using the fields pragma:

package Student;

use fields 'name',
'registration’,
'grades’;

sub new {
my($class, $name) = @ ;
$self = fields::new($class);
$self->{name} = $name;

return $self;

package main;
use Student;

my $clara = Student->new('Clara');
$clara->{name} = 'WonderClara';

7 0f 10 03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know http://www.netalive.org/tinkering/serious-perl/

8 of 10

$clara->{gobbledegook} = 'foo';

A note on the uniform access principle

Some of you might turn up their noses at the way | access instance attributes in my examples. Writing $clara->{name} is fine as long as | only need to return a stored value. However, should my
Student package change in a way that returning a {name} requires some kind of computation (like combining it from a {first name} and {last name}), what should | do? Obviously changing
the public interface of my package and replace all occurences of $clara->{name} with $clara->get name() is no acceptable option.

Basically you are left with two options:

e |t is possible to retrospectively tie the scalar in $clara->{name} to a class that does the required computation whenever someone gets or sets the attribute. | find this process to be
somewhat laborious in vanilla Perl, but take a look at the perltie page in the Perl documentation to get your own picture.

e Use accessor methods (aka getters and setters) exclusively and outlaw direct attribure access in your software project. | personally prefer this alternative because it makes for prettier code and
gives me control over which attributes are visible to other classes. CPAN carries various module which automate the creation of accessor methods. | will show you how to roll your own
accessor generator in Extending the language.

Imports

Because the packages you use get imported at compile-time you can completely change the playing field before the interpreter even gets to look at the rest of your script. Thus imports can be
extremely powerful.

Import parameters

You can hand over parameters to any package you use:

package Student;
use Some::Package 'paraml', 'param2';

Whenever you use a package, the static method import is called in that package with all parameters you might have given:

package Some::Package;
sub import {
my($class, @params) = @ ;

Who's calling?

The caller () function lets you (among other things) find out what class was calling the current method:

package Some::Package;
sub import {

03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know http://www.netalive.org/tinkering/serious-perl/

my($class, @params) = @ ;

print "Look, " . caller() . " is trying to import me!";

Extending the language

Let's combine what we know and write a simple package members that sets fields for the calling package, and while it's at it produces convenient accessor methods for these fields:

package members;
sub import {

my($class, @fields) = @ ;
return unless @fields;
my $caller = caller();

Build the code we're going to eval for the caller
Do the fields call for the calling package
my $eval = "package $caller;\n" .
"use fields qw(" . join(' ', @fields) . ");\n";

Generate convenient accessor methods
foreach my $field (@fields) {
$eval .= "sub $field : lvalue { \$ [0]->{$field} }\n";

Eval the code we prepared
eval $eval;

$@ holds possible eval errors
$@ and die "Error setting members for $caller: $@";

In a nearby piece of code...

package Student;

use members 'name',
'registration’,
'grades’;

sub new {
my($class, $name) = @ ;

90f 10 03/07/2012 11:43 AM

Writing serious Perl: The absolute minimum you need to know

10 of 10

$self = fields::new($class);
$self->{name} = $name;
return $self;

package main;

my $eliza = Student->new('Eliza');
print $eliza->name;

$eliza->name = 'WonderEliza';
print $eliza->name;

Essential resources

e Perl Design Patterns
e CPAN Search

Final words

| hope this little guide was of any help for you. If you have questions or comments, please fire away (just don't send me your homework).

http://www.netalive.org/tinkering/serious-perl/

On a related note, | wrote a pragma called Reformed Perl that facilitates many basic OOP tasks in Perl 5 and provides a much nicer syntax. Go have a look!

About the author

Henning Koch is a student of Informatics and Multimedia at the University of Augsburg, Germany. He publishes a weblog about software design and technology at http://www.netalive.org/swsu/.

2004 by Henning Koch | Software will save us

03/07/2012 11:43 AM

