Blowtorch: a Framework for Firewall Test Automation

Daniel Hoffman
University of Victoria
Department of Computer Science
PO Box 3055 STN CSC
Victoria, BC Canada V8N 4C9

dhoffman@cs.uvic.ca

ABSTRACT

Firewalls play a crucial role in network security. Experi-
ence has shown that the development of firewall rule sets is
complex and error prone. Rule set errors can be costly, by
allowing damaging traffic in or by blocking legitimate traf-
fic and causing essential applications to fail. Consequently,
firewall testing is extremely important. Unfortunately, it is
also hard and there is little tool support available.

Blowtorch is a C++ framework for firewall test generation.
The central construct is the packet iterator: an event-driven
generator of timestamped packet streams. Blowtorch sup-
ports the development of packet iterators with a library for
packet header creation and parsing, a transmit scheduler
for multiplexing of multiple packet streams, and a receive
monitor for demultiplexing of arriving packet streams. The
framework provides iterators which generate packet streams
using covering arrays, production grammars, and replay of
captured TCP traffic. Blowtorch has been used to develop
tests for industrial firewalls, placed between an IT network
and a process control network.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms

Security, Verification

Keywords
automated testing, production grammar, covering array, cap-
ture/replay, network firewall

1. INTRODUCTION

The rule sets used to configure firewalls are based primarily
on a single language construct: condition/action lists eval-
uated like a C switch statement. The rule set is applied

Kevin Yoo
University of Victoria
Department of Computer Science
PO Box 3055 STN CSC
Victoria, BC Canada V8N 4C9

kyoo@uvic.ca

to each packet arriving at a firewall port. The conditions
are boolean expressions on the packet header field values or
on firewall state, which is usually a table with an entry for
each active network connection. The actions are typically
“accept,” “drop,” or “log.” There are no variables, loops, or
function calls. Despite the simplicity of the language, com-
mercial firewall rule sets are complex and extremely error
prone [14]. Because firewall rule sets are complex programs,
they need to be thoroughly tested. Unfortunately, develop-
ing firewall tests is difficult and there is little tool support
available.

Blowtorch is a C++ framework designed for testing firewall
rule sets in the process control environment [3], where the
cost of failure is high and extensive testing is justified. Most
firewall testing today is based on vulnerability assessments,
e.g., port scans, intended to determine the vulnerability of
a protected network to attacks through the firewall. In con-
trast, Blowtorch tests the firewall in isolation, connected
only to test equipment. The tests are fully automated, in-
cluding output checking, and are repeatable at negligible
cost. Both kinds of tests are valuable; at present, there is
much better tool support for vulnerability assessments.

While the target domain of this paper is firewall testing, the
techniques are drawn from classic approaches in test tools.
A framework is supplied to factor out the common aspects,
significantly reducing the cost of test development. Tests
are generated using production grammars, covering arrays,
and capture/replay. Considerable adaptation was required,
however, to apply these techniques to firewall testing. For
example, packet capture/replay is fundamentally different
from GUI capture/replay.

Section 2 presents an architecture and security policy for
a firewall configured for use in a process control network.
Section 3 presents the Blowtorch framework and Section 4
describes tests developed using the framework. Section 5
presents related work.

2. FIREWALL ARCHITECTURE

This section presents an architecture and security policy
designed to separate hosts on the Business Network (BN)
from those on the Process Control Network (PCN). While
the architecture and policy are consistent with current best
practices for PCNs [3], they have been simplified for the pur-
poses of this paper. In practice, there will be more servers
and more applications than shown.

Internet

Firewall
Firewall
Process Control Business Network
Network

DMZ

Figure 1: A Process Control Network firewall archi-
tecture

2.1 Firewall Architecture

Figure 1 shows a 3-zone firewall, similar to those used in IT
networks. The demilitarized zone (DMZ) contains servers
to be shared by the PCN and the BN. The DMZ contains a
Data Historian: a specialized database server used to store
sensor values from the PCN.

The PCN typically contains thousands of sensors and actu-
ators, controlled by tens or hundreds of programmable logic
controllers (PLCs). The PLCs, in turn, are monitored and
controlled by human-machine interfaces (HMIs), typically
PCs running specialized GUIs displaying virtual gauges and
switches. The HMIs log sensor values to the Data Historian.

The BN contains tens or hundreds of hosts, mostly office
PCs. These PCs read sensor values from the Data Historian.
The BN is connected to the PCN/DMZ firewall, and also to
the Internet through another firewall, which is not the topic
of this paper.

2.2 Firewall Security Policy

While the firewall architecture in Figure 1 is similar to typ-
ical IT architectures, the traffic patterns and security con-
cerns are quite different. On the PCN/DMZ path, the traffic
rate is modest but delay or loss can be costly. Because the
sensor data must be timestamped by the Data Historian,
packet delays will cause timestamp inaccuracies. On some
PCNs, e.g., those used for drug manufacture, complete and
accurate sensor data is required by law. Even when not
legally required, loss of sensor data is considered serious.
On the BN/DMZ path, the traffic rates may be higher but
delays or temporary outages are problematic but much less
serious.

Because the BN is connected to the Internet, the PCN is
as well, albeit indirectly. Attacks on the BN can be costly,
like attacks on other IT networks. A successful attack on
the PCN, however, can be far more costly, resulting in loss
of product, damage to equipment, or injury or loss of life.
Modern PLCs often use Ethernet and TCP/IP but usually
do not have hardened TCP/IP stacks, and are known to be

vulnerable to standard Internet attacks [6].

A security policy to (partially) address these concerns is as
follows:

e On the PCN/DMZ path, allow only hosts in PCN_IPS
(see Figure 1) to access the Data Historian. Allow only
inbound TCP connections to DH_IP.

e Similarly, on the BN/DMZ path, allow only hosts in
BN_PS to access the Data Historian. Allow only in-
bound TCP connections to DH_IP.

e Drop all traffic on the PCN/BN path.

e Provide SYN flood protection using rate limiting on
the BN firewall port, to protect the PCN from this
DoS attack.

e On all TCP connections, drop all packets with bad
TCP flag combinations, e.g., SYN plus FIN.

2.3 Four Firewall Tests
In the sections to follow, we will focus on four tests for this
firewall security policy:

1. SYN flood on BN firewall port. Check that, if TCP
SYN packets are sent at a higher rate than permitted,
the accepted packets do not exceed the maximum rate
specified by the policy.

2. Data Historian Connections. Let a connection identi-
fier be the four-tuple:

(srcIPaddr, src¢TCPport, dstIPaddr, dstTCPport)

and let SRC_PORTS be a set of legal source ports.
Check that PCN/DMZ connections are permitted with
every connection identifier in

(PCN_IPS x SRC_PORTS x DH_IP x DH_PORT)

Let PCN_IPS_XC be set of IP addresses disjoint with

PCN_IPS. Check that PCN/DMZ connections are blocked

with every connection identifier in
(PCNIP XC x SRC_PORTS x DHIP x DH_PORT)

Perform the analogous tests for the BN/DMZ path.

3. Bad TCP flags. Drop all packets with illegal TCP flag
combinations.

4. Replay of production traffic. Capture traffic from ac-
tual PCN/DMZ and BN/DMZ TCP connections. Check
that the firewall allows this traffic to be replayed.

3. THEBLOWTORCHTEST FRAMEWORK

Stream (TCP) and datagram (UDP) sockets are in common
use in distributed computing applications. Unfortunately,
they are inadequate for firewall testing. For many tests, raw
sockets are required, which provide complete control over
header fields and packet timing. While raw sockets provide
excellent control, they require far more coding effort to use.
Tool support is required, offering at least:

e Control over all header fields. To generate tests for bad
TCP flag combinations, for example, you must cre-
ate TCP headers with flag combinations which would
never appear in stream or datagram socket packets.

o Control of packet timing. To test a firewall for SYN
flood protection, you might need to generate 500 TCP
SYN packets at 50 packets per second. Attempting to
open 50 stream sockets per second would not produce
the desired result. The first TCP packet in each con-
nection might be sent immediately after the socket is
opened, or some time later. Further, most hosts are
limited to 100 or so open stream sockets.

o Support for handshaking. So called “stateful filtering
rules” track request/response exchanges. A typical
rule will drop a response packet from a server unless it
is preceded by a request packet from the client. Con-
sider a TCP SYN (request) from a PCN client to a
DMZ server and the TCP SYN-ACK (response) packet
from the server. For testing, a SYN packet must be
sent to the firewall PCN port. The test code must wait
until the firewall forwards that packet, and it is seen on
the firewall DMZ port, before sending the SYN-ACK
packet to the firewall DMZ port. If the SYN-ACK is
sent before the firewall has handled the SYN, the fire-
wall will (correctly) drop the SYN-ACK, but the test
code will report an error.

o Support for traffic capture and replay. Production traf-
fic streams often contain complex packet exchanges
which are difficult to generate synthetically. There are
huge benefits to tools which can capture the traffic—
relatively easy—and replay it—much more difficult.

e Fasy test creation, ezecution and maintenance. Net-
work administrators are typically smart but rarely get
the large blocks of uninterrupted time required for se-
rious software development. Tools are needed which
factor out the repetitive tasks and allow development
of useful tests in a page or two of code.

3.1 Framework Overview

The central construct in the Blowtorch framework is the
packet iterator. A PacketIter object provides a stream of
packets. As shown in Figure 2, iterators Io, I1, ..., In—1 pro-
vide packets to the PacketScheduler which enqueues the
streams. PacketTransmit dequeues the packets, passing
them to the appropriate network interface. Each network
interface is encapsulated as a PacketIO object.

Blowtorch monitors the PacketI0 objects for packet arrivals.
When a packet arrives, it is passed to the PacketIter object
that generated it, providing support for handshake tests.

C | | | Packet I ter
: U }objects
|
|
|
|
|
1+ | Packet Schedul er
Transmit |
packets |
1 Packet Transmi t
|
|
|
|
| T
10, 10, ... 10 Packet 10
o ‘0 ‘ 1 n-1 fobjects
Firewall under test
r ‘ ‘ ‘ Packet | O
! IOO 10y ... Ion—1}0bjects
|
; L1
|
- |
Receive | -
packets | Packet Recei ve
|
|
|
|
: | | | Packet I ter
- SR L }objects

Figure 2: Blowtorch packet flow

3.2 Packet Generation and Parsing

Each Packet object contains a buffer, an I/O identifier,
and a timestamp. For a packet to be transmitted, the
buffer contains the raw packet, the I/O identifier specifies
the PacketIO object to be used for transmission, and the
timestamp is the requested transmission time. For a re-
ceived packet, the buffer contains the raw packet, the I/O
identifier specifies the PacketI0 object which handled the
arriving packet, and the timestamp is the time at which the
packet was received.

By using raw sockets, Blowtorch provides direct control over
all packet header fields. Unfortunately, raw sockets are much
harder to use than stream or datagram sockets: the pro-
grammer must explicitly assign every header field, and deal
with header layouts, byte swapping, and checksum calcula-
tions. Blowtorch provides a library, the Raw Socket Toolkit,
which hides these details and makes it easy to generate and
parse packets with raw sockets.

3.3 Packet Iterators

PacketIter is an abstract class containing three methods:

1. next returns the next packet for transmission, if avail-
able.

2. hasNext returns READY if the iterator has a packet
ready for transmission, SUSPENDED if the iterator does
not currently have a packet ready for transmission, and
TERMINATED if the iterator has already provided all of
its packets.

3. notify is a callback method, invoked by the framework
to pass an arriving packet to the iterator.

PacketIterId is an abstract class containing two methods:

1. getIterId takes a Packet object and extracts an iden-
tifier specifying one of the iterators. Usually, getIterId
is implemented to specify the iterator which originally
provided the packet for transmission, or —1 if the packet
was not provided by any of the iterators.

2. notify is a callback method invoked when getIterId
returns —1. In some tests notify is used to display
error messages for unexpected packets. In other tests,
it is used for housekeeping tasks, e.g., detecting an
ARP request and generating an ARP reply.

3.4 Packet I/O

PacketI0 is an abstract class providing two methods: send
and receive. Four PacketI0 objects are currently provided
by Blowtorch:

1. RawSocketIO uses the raw socket service.

2. TapSocketI0 uses Ethernet taps, an Ethernet driver
without an associated Ethernet card. A tap sends
packets to a buffer which can be read by a test pro-
gram, and receives packets from a second buffer which
can be written by a test program. Most Blowtorch

tests require two or three network interfaces; a three
interface test can be developed on a machine with no
Ethernet hardware by using TapSocketIO0.

3. NullSocketIO is the Blowtorch equivalent of /dev/null:
calls to send and receive are always legal but have no
effect.

4. GatewaySocketI0 provides more accurate transmission
timing using an off-the-shelf home gateway connected
to the PC by Ethernet. Packets are sent from the
PC immediately, regardless of the timestamp value.
The gateway, running custom software developed with
MicroC/OS [8], buffers the packets, sending them ac-
cording to the timestamp value. Our experiments have
shown that GatewaySocketIO can achieve transmis-
sion accuracy within about 50 microseconds, where
RawSocketI0 accuracy is typically about 15 millisec-
onds.

With network I/O encapsulated in this way, it is easy to
switch between network interfaces during test development.

3.5 Timestamp Generation

The TimeIter abstract class supports the generation of packet
timestamps. Two methods are provided: next returns the
next timestamp, which must be larger than the previous one,
and hasNext returns true until the last timestamp has been
retrieved. TimeIter objects are usually passed to PacketIter
constructors. Blowtorch provides three TimeIter objects:

e FixedTimeIter returns timestamps with specified start
value and delta, e.g., 1.0,1.1,1.2,.. ..

e BurstyTimeIter returns timestamps with specified start
time, burst length, inter-packet gap and inter-burst
gap, e.g., 0.0,0.1,0.2,1.0,1.1,1.2,

e FileTimeIter retrieves timestamps from a file. Typ-
ically, the file contents are either generated from a
statistical distribution or extracted from a captured
packet trace.

3.6 All Together Now

With the main framework classes in hand, it is helpful to
revisit Figure 2, focusing on the tester’s view. The tester
must provide three entities:

e packetIOs: a vector of PacketI0 objects.

e packetIters: a vector of PacketIter objects. The
I/0 identifier contained in each returned packet is in-
terpreted as an index into packetIOs.

o packetIterId: a PacketIterId object. The iterator
identifier returned by getIterId is interpreted as an
index into packetIters.

Blowtorch then repeatedly invokes the main Blowtorch ob-
jects: PacketScheduler, PacketTransmit, and PacketReceive:

e PacketScheduler polls the iterators, calling next when-
ever hasNext returns READY. Packets from the iterators
are merged in an internal queue. Based on a construc-
tor parameter, either earliest-deadline-first or earliest
completion-time-first scheduling is used. The goal is to
minimize the total difference between the timestamps
returned by the iterators and the actual transmission
times.

e PacketTransmit dequeues the scheduled packets, send-
ing each packet to the PacketIO object indicated by
the I/O identifier at the time indicated by the times-
tamp.

e PacketReceive polls the PacketIO objects in packetIOs
calling packetIterId.getIterId to compute the it-
erator identifier, 4. If ¢ € [0, packetIters.size() —
1] then packetIters[:].notify is invoked; otherwise
packetIterId.notify is invoked.

4. FOUR TESTS REVISITED

This section presents Blowtorch implementations of the four
tests described in Section 2. For simplicity, each test is
presented below “standalone,” i.e., the packetIters vector
has a single element.

4.1 A SYN Flood Iterator

In this test, the firewall is configured with a rate limiting
rule, intended to prevent more than 10 TCP SYN packets
per second from being forwarded. The test will send 1000
TCP SYN packets at 100 packets per second. While only
100 of the packets should be forwarded, to allow for timing
variations the test will check that no more than 110 get
thorough.

The test is implemented with the SynFloodPacketIter and
SynFloodPacketIterId classes. In SynFloodPacketIter:

e The constructor takes three parameters: (1) a start-
ing connection id, (2) the I/O identifier of the client
PacketI0 object, and (3) a FixedTimeIter object, with
start timestamp = 0 and delta = 10 milliseconds. The
constructor uses the Raw Socket Toolkit to build a
TCP packet based on the constructor parameters.

e hasNext returns READY until 1000 packets have been
retrieved and returns TERMINATED thereafter.

e next increments the source TCP port to avoid dupli-
cate connection identifiers, fetches the next timestamp
from the FixedTimeIter object, and invokes a Raw
Socket Toolkit function to do byte swaps and to com-
pute the IP and TCP checksums.

e notify records the total number of SYN packets re-
ceived in synTotal.

e The destructor reports an error if synTotal < 110.

In SynFloodPacketIterId, the getIterId method returns
0 if the packet is a TCP SYN packet and returns -1 oth-
erwise. If the notify method receives an ARP request, it
generates an ARP reply; otherwise it generates an “unex-
pected packet” message.

4.2 A Generic TCP Iterator

The TCPIter class helps the tester to create legitimate TCP
sessions. By legitimate, we mean that TCPIter is sending
TCP segments that perform correct handshaking and use
proper header field values. For example, the sequence and
acknowledgement numbers in each TCP segment are prop-
erly set.

The sequence of TCP segments are specified abstractly in
an input file containing one or more abstract frames. An
abstract frame is a nine-tuple:
host action wurg ack psh rst syn fin len

Each TCP session involves two hosts: a client, the host that
initiates the session, and a server, the host that receives the
initiation request; host indicates which of these two hosts
the abstract frame belongs to. Action enables TCPIter to
enforce proper handshaking; it can take one of two values:
tz, specifying that TCPIter will send this frame onto the
network, and rx, indicating that TCPIter will be suspended
until the specified frame is received. The last seven parame-
ters of the abstract frame represent fields in the TCP header.
Urg, ack, psh, rst, syn, and fin are the TCP control flags,
while len specifies the length of the TCP payload.

The 3-way handshake is executed at the beginning of every
TCP session to perform connection initialization [13]. Here
are the abstract frames that constitute the 3-way handshake:

host action wurg ack psh rst syn fin len
client tx 0 0 0 0 1 0 0
server rx 0 0 0 0 1 0 0
server tx 0 1 0 0 1 0 0
client rx 0 1 0 0 1 0 0
client tx 0 1 0 0 0 0 1
server rx 0 1 0 0 0 0 1

The first abstract frame represents the transmission of the
SYN packet on the client side. The next abstract frame
is the reception of this SYN packet on the server side; the
subsequent abstract frames will not be evaluated until this
SYN packet is received at the server, ensuring that proper
handshaking must occur during the creation of this session.

4.3 Data Historian Connections

In this test, we need to create full TCP connections for two
sets of connection identifiers. In NC_IDS, the source IP ad-
dress is taken from PCN_IPS or BN_IPS and the source ports
are selected from the temporary ports, i.e., 1024 or larger.
The destination IP address is DH_IP and the destination
port is the Data Historian server port. The XC_IDS connec-
tion identifiers are like those in NC_IDS except that one or
more of the addresses and ports is prohibited. All TCP pack-
ets in the NC_IDS connections should be forwarded by the
firewall while all packets in the XC_IDS connections should
be dropped. If either NC_IDS or XC_IDS is large, e.g., uses
all the addresses on the subnet, then cost dictates that only
a subset of the connection identifiers will be tested. The
subset should be selected systematically.

Using TCPIter, it is easy to develop the tests by overriding
notify for TCPiter so that it is silent if a received packet has

a connection identifier in NC_IDS and issues an error mes-
sage otherwise. If either NC_IDS or XC_IDS is too large, we
produce smaller subsets using covering arrays. Our imple-
mentation of Tai’s algorithm [12] extracts all pairwise com-
binations from the full sets, producing substantially smaller
subsets.

4.4 Bad TCP Flags

There are six control flags in the TCP header. While a
network application can set these flags in any way that it
wants, not all flag combinations are meaningful. For exam-
ple, a TCP packet with both the syn and fin flags set is not
understood by any TCP stack. Of the sixty-four possible
combinations of flags, only eighteen are considered mean-
ingful [10, 282]. For this test, we wanted to determine how
a firewall handles the forty-six bad flag combinations. Since
these flags should never occur in normal network traffic, the
desired behavior of a firewall would be to drop all packets
containing these bad flag combinations.

For these tests, we wanted to see which bad flag packets
are filtered by a firewall, and to determine if the state of
the TCP session has any bearing on which packets are for-
warded. The state of the TCP session should play a role,
because firewalls maintain a connection tracking table that
monitors each TCP connection. Therefore, the firewall may
handle a bad flag packet differently if it has just seen, for
example, a SYN-ACK packet as opposed to a FIN-ACK
packet. In order to determine if state makes a difference,
we will send the bad flag packet at different times during a
TCP session. Each TCP session consists of six packets that
are sent between the server and client. Therefore, there are
five different places where we can send a bad flag packet, as
depicted in Figure 3. We have five places to insert forty-six
bad flag packets; this results in two hundred and thirty test
cases, where a test case consists of the packets required to
build a TCP session along with the one bad flag packet. To
create these test cases, a production grammar was used.

A production grammar is defined in the same manner as a
traditional parsing grammar; it is composed of a set of rules:
non-terminal to terminal mappings. However, the difference
between a production grammar and a parsing grammar is
that the former is used in reverse; it is used to generate
strings in the language that it defines, rather than to parse
a string to determine its membership in the language. The
power of production grammars lies in their ability to gen-
erate a very large set of strings from a relatively small set
of rules. For our tests, the strings that are generated are
abstract frames, which are then passed to TCPIter. The
grammar that defines the TCP segments for our tests is de-
picted in Figure 4.

Our production grammar creates the entire language that it
defines; that is, a test case is created for every permutation
of every bad flag packet in each of the five locations of the
TCP session. For a relatively small test set, this behavior
is desirable. However, if the language is much bigger, then
the tester may not want all of the different test cases. If
the tester wants only a subset of the test cases, then she
likely wants some control over how the test cases are being
generated. This control can be facilitated through the use
of annotations in the grammar.

Client Server

1. Bad Flag Packet

=

SYN-ACK

2. Bad Flag Packet

»

) 3. Bad Flag Packet

=

4. Bad Flag Packet

»

5. Bad Flag Packet

=

Figure 3: The five insertion points for a bad flag
packet

(start) ::=

(syn) (bfp) (syn-ack) (ack) (fin-ack) ((ack)
(syn) (syn-ack) (bfp) (ack) (fin-ack) (fin-ack) (ack)
(syn) (syn-ack) (ack) (bfp) (fin-ack) (fin-ack) (ack)
(syn) (syn-ack) {ack) (fin-ack) (bfp) (fin-ack) (ack)
(syn) (syn-ack) (ack) (fin-ack) (fin-ack) (bfp) (ack)

fin-ack)

(bip) ::= (bipl) | (bfp2) | ... | (bp46)

(syn) == client tx 0000100
(syn-ack) ::=server tx 0100100

{ack) :=server tx 0100000

(bfp1) ::= client tx 000000 0
(bfp2) = client tx 0000010

(bfp46) ==client tx1111110

Figure 4: Bad flag production grammar

With annotations, we provide two ways of giving the tester
control over test case generation: a way to limit the to-
tal number of test cases created, and a method of assigning
probabilistic weights to decisions that are made in the gram-
mar. We created one of these annotated grammars to create
TCP sessions that allow multiple bad flag packets within a
single TCP session. This new grammar can produce 475 dis-
tinct test cases, far more than anyone can afford to execute.
Therefore, the annotations are not only useful, but often a
necessity.

We tested two firewalls: iptables, which is an open source
firewall that runs on Linux, and a Cisco Pix, which is the
industry standard. Iptables has explicit facilities that deal
with bad flag packets, and so none get through inside or
outside of a TCP session. The Pix has no such explicit
feature, and the results of those tests will now be discussed.

We conducted two tests: one test that simply sent the forty-
six bad flag packets through the firewall, and another test
that sent bad flag packets within legitimate TCP sessions.
For the first test, only two of the forty-six combinations were
accepted. For the second test, more packets were indeed for-
warded. For example, some bad flag packets with the ack
flag set now get through, whereas neither of the two bad
flag packets that got through in the first test had this flag
set. This result makes sense; since legitimate TCP packets
cannot have the ack flag set outside of a session, we would
expect the firewall to easily discard these obviously badly
formed packets. Inside a session, however, the process of
determining the validity of a packet is not as straightfor-
ward. Furthermore, as we suspected, the particular place a
packet is sent within a TCP session does influence whether
or not a bad flag packet is accepted. For instance, between
the two FIN-ACK’s, thirty-four of the forty-six combina-
tions are accepted by the firewall, whereas only nineteen are
forwarded between the second FIN-ACK and the last ACK.

4.5 Replay of Production Traffic

Capture/replay based testing sounds very appealing; just
press “record,” execute the software-under-test and press
“replay” later to run the test. In the ideal case, the result
is realistic tests with negligible development cost. In reality
the situation is more complex and there are many kinds of
capture/replay. In the networking domain, the following
questions arise:

e What network interface(s) do you monitor?
e Which packets do you extract for retransmission?

e During replay, on which interface do you transmit each
packet?

When do you transmit each packet?

After replay, how do you determine success and failure
automatically?

With the TCPReplayIter class, packet capture is performed
at a single network interface using an off-the-shelf packet
sniffer. Each TCPReplayIter instance handles one captured
TCP stream. The tester provides the connection identifier

of the client to the constructor and TCPReplayIter extracts
TCP packets with either that identifier or the swapped ver-
sion corresponding to the server.

For replay, the tester provides the I/O identifiers of the client
and server PacketI0O objects. Then each extracted packet
with the client connection identifier is sent to the client
PacketIO object; similarly, each extracted packet with the
server connection identifier is sent to the server PacketI0 ob-
ject. Correctness checking is straightforward: every trans-
mitted packet should be forwarded.

There remains the subtle issue of when to send the packets.
TCPReplayIter supports three modes:

o Timestamp-driven. Each packet is transmitted using
the timestamps present in the capture file. This ap-
proach provides the most accurate replay but can be
problematic, as noted in Section 3 under Support for
handshaking.

e Stop and wait. In this mode each packet is transmitted
as soon as the previous packet has been forwarded,
eliminating handshaking problems, but ignoring the
captured timing information.

o Hybrid. This mode combines the previous two, trans-
mitting each packet at the later of (1) the captured
timestamp and (2) the arrival of the previous packet.

5. RELATED WORK

The utility of production grammars in software testing has
already been demonstrated; there has already been a great
deal of work involving production grammars in compiler
testing [5]. Within network testing, far less work has been
done, but the Protos project did use production grammars
to test SNMP [1].

Our pairwise generation algorithm is based on the In-Parameter-

Order (IPO) algorithm proposed by Tai and Lei [12]. We
have improved the IPO algorithm and our improved algo-
rithm always generates the same or a smaller number of
tuples than the original IPO algorithm. In some test sce-
narios, our improved IPO algorithm also generates better
results than the AETG commercial tool [4].

Firewall testing has been conducted in ways much different
from our own, including the three techniques that will now
be described. Vulnerability testing is one manner of deter-
mining the effectiveness of a firewall [2]. The authors use
the SATAN security analysis tool to probe two firewalls for
vulnerabilities. The firewall analysis tool Fang accepts and
answers queries regarding the network security policy using
static rule checking [9]. For example, a query might be:
“Which services are allowed between the internal network
and the Internet.” Another approach to firewall testing in-
volves using a CASE tool to model the firewall and the sur-
rounding network [7]. Test cases can then be automatically
generated from this model. Their tool does not create live
packets; rather, human-readable “message sequence charts”
are generated.

The most comparable work to Blowtorch is the MACE frame-
work [11]. Both Blowtorch and MACE are frameworks for

low-level packet generation. However, there is a critical dif-
ference between the two approaches: Blowtorch is able to
generate traffic on both the client and server-side, whereas
Blowtorch can only create client-side traffic. For instance,

consider the TCPIter class described earlier.

For the TCP

session, Blowtorch is able to send the initial SYN packet
from the client, the SYN-ACK packet from the server, and
every other packet on both sides of the TCP connection.
MACE can only send the SYN packet from the client side,
along with the other client-side packets. In terms of the tests
that were presented earlier, MACE cannot perform the Bad
TCP Flags test, the Data Historian connections test, nor
duplicate the capture/replay functionality.

6.

CONCLUSIONS

The effectiveness of a firewall depends directly on its configu-
ration, which is done through rule sets. Despite the simplic-
ity of the rule set language, many firewalls have significant
configuration errors. Therefore, tools that test a firewall and
its rule set are required. Most of the existing firewall test-
ing is done using vulnerability assessment tools which test
generic network vulnerability but not a particular firewall
configuration.

We have presented a framework aimed at developing policy-
specific firewall tests. We have shown how Blowtorch can
test a 3-way firewall in a process control environment. In
testing this firewall, we have demonstrated the power and

flexibility of the framework with four novel tests.
tests, while particular to firewall testing, employ classic meth-

These

ods in testing: the bad TCP flags test uses production gram-
mars, and the Data Historian connections test utilizes cov-
ering arrays. The Blowtorch framework also allows for ac-
curate packet timing, as shown in the SYN flood test, for
traffic capture and replay, as evidenced in the capture/replay
test, and for control of handshaking, as demonstrated by the
TCPIter class. Within this framework, we expect to create
many more tests in the immediate future, and to expand the
framework itself.

7.

ACKNOWLEDGMENTS

We would like to thank B. Chauvin of the British Columbia
Institute of Technology for his invaluable assistance in con-
figuring the Cisco Pix firewall for the bad TCP flags tests.

8.
[1]

(2]

[4]

REFERENCES

Protos - security testing of protocol implementations,
2000. http://www.ee.oulu.fi/research /ouspg/protos/.

K. Al-Tawil and I. A. Al-Kaltham. Evaluation and
testing of internet firewalls. Int. J. Netw. Manag.,
9(3):135-149, 1999.

E. Byres and K. Savage. NISCC good practice guide
on firewall deployment for SCADA and process
control networks.
http://www.niscc.gov.uk/niscc/docs/re20050223-
00157.pdf,

2005.

D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.
Patton. The combinatorial design approach to
automatic test generation. IEEE Softw., 13(5):83-88,
1996.

[5]

[9]

[10]

[11]

[12]

[13]

[14]

A. G. Duncan and J. S. Hutchison. Using attributed
grammars to test designs and implementations. In
ICSE ’81: Proceedings of the 5th international
conference on Software engineering, pages 170-178,
Piscataway, NJ, USA, 1981. IEEE Press.

D. Hoffman and E. Byres. Worlds in collision:
Ethernet on the plant floor. In ISA Emerging
Technologies Conference. Instrumentation Systems
and Automation Society, Oct. 2002.

J. Jurjens and G. Wimmel. Specification based testing
of firewalls. In Jth International Conference
Perspectives of System Informatics, 2001.

J. Labrosse. MicroC OS II: the Real Time Kernel.
CMP Books, second edition, 2002.

A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall
analysis engine. In SP ’00: Proceedings of the 2000
IEEE Symposium on Security and Privacy (S€P
2000), page 177, Washington, DC, USA, 2000. IEEE
Computer Society.

B. McCarty. Red Hat Linuz Firewalls. Wiley
Publishing, first edition, 2003.

J. Sommers, V. Yegneswaran, and P. Barford. A
framework for malicious workload generation. In IMC
’04: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, pages 82-87,
New York, NY, USA, 2004. ACM Press.

K. C. Tai and Y. Lie. A test generation strategy for
pairwise testing. IEEE Trans. Softw. Eng.,
28(1):109-111, 2002.

A. S. Tanenbaum. Computer Networks. Prentice Hall,
fourth edition, 2003.

A. Wool. A quantitative study of firewall configuration
errors. Computer Magazine, pages 62-67, 2004.

