
Software Design, Automated Testing, andMaintenanceA Practical ApproachDaniel Ho�man and Paul StrooperJanuary 7, 2000



iv



Contents
Preface xxiiiI Background 11 Introduction 31.1 The Software Engineering Problem : : : : : : : : : : : : : : : : : 31.2 Software Engineering Principles : : : : : : : : : : : : : : : : : : 41.3 Software Lifecycle : : : : : : : : : : : : : : : : : : : : : : : : : : 51.3.1 Software tasks : : : : : : : : : : : : : : : : : : : : : : : : 51.3.2 The waterfall model : : : : : : : : : : : : : : : : : : : : : 81.3.3 Other models : : : : : : : : : : : : : : : : : : : : : : : : 81.3.4 Our model : : : : : : : : : : : : : : : : : : : : : : : : : : 111.4 The Big Picture : : : : : : : : : : : : : : : : : : : : : : : : : : : 121.4.1 Software project management : : : : : : : : : : : : : : : 121.4.2 Software development methods : : : : : : : : : : : : : : : 131.4.3 Software quality assurance : : : : : : : : : : : : : : : : : 151.4.4 Software measurement : : : : : : : : : : : : : : : : : : : 171.4.5 Software tools : : : : : : : : : : : : : : : : : : : : : : : : 181.5 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 192 Software Engineering Fundamentals 212.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 212.2 Documentation Principles : : : : : : : : : : : : : : : : : : : : : : 212.2.1 Current practice : : : : : : : : : : : : : : : : : : : : : : : 212.2.2 Planned documentation : : : : : : : : : : : : : : : : : : : 222.2.3 Triple-purpose documents : : : : : : : : : : : : : : : : : 232.2.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : 232.3 Work Products : : : : : : : : : : : : : : : : : : : : : : : : : : : : 242.3.1 Terminology : : : : : : : : : : : : : : : : : : : : : : : : : 242.3.2 Work product de�nitions : : : : : : : : : : : : : : : : : : 252.3.3 The speci�cation trichotomy : : : : : : : : : : : : : : : : 262.4 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27v



vi CONTENTS2.4.1 Inspection : : : : : : : : : : : : : : : : : : : : : : : : : : 282.4.2 Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : 292.4.3 Inspection versus testing : : : : : : : : : : : : : : : : : : 302.5 Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 312.5.1 Estimating concepts : : : : : : : : : : : : : : : : : : : : : 312.5.2 Software estimating : : : : : : : : : : : : : : : : : : : : : 322.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 322.7 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 333 Mathematical Fundamentals 353.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 353.2 Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 363.2.1 Sets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 363.2.2 Relations : : : : : : : : : : : : : : : : : : : : : : : : : : : 363.2.3 Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : 373.3 Logic : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 383.3.1 Logical expressions : : : : : : : : : : : : : : : : : : : : : 383.3.2 Quanti�ers : : : : : : : : : : : : : : : : : : : : : : : : : : 393.4 Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 413.4.1 De�ning types : : : : : : : : : : : : : : : : : : : : : : : : 413.4.2 Primitive types : : : : : : : : : : : : : : : : : : : : : : : 423.4.3 Sets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 423.4.4 Sequences : : : : : : : : : : : : : : : : : : : : : : : : : : 443.4.5 Tuples : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.4.6 Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : 463.5 The Multiple Assignment Statement : : : : : : : : : : : : : : : : 463.6 Conditional Rules : : : : : : : : : : : : : : : : : : : : : : : : : : 483.7 Finite State Machines : : : : : : : : : : : : : : : : : : : : : : : : 513.8 Module State Machines : : : : : : : : : : : : : : : : : : : : : : : 533.8.1 Speci�cation sections : : : : : : : : : : : : : : : : : : : : 533.8.2 Example: list module : : : : : : : : : : : : : : : : : : : : 543.8.3 Additional speci�cation rules : : : : : : : : : : : : : : : : 553.8.4 Example: extended list module : : : : : : : : : : : : : : 573.9 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 593.10 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 60II Work Products 614 Introduction 634.1 The SHAM System : : : : : : : : : : : : : : : : : : : : : : : : : 634.1.1 Purpose : : : : : : : : : : : : : : : : : : : : : : : : : : : 634.1.2 Overview of services o�ered : : : : : : : : : : : : : : : : 644.1.3 Overview of work products : : : : : : : : : : : : : : : : : 654.1.4 Document conventions and notations : : : : : : : : : : : 66



CONTENTS vii4.2 Overview of Part II : : : : : : : : : : : : : : : : : : : : : : : : : 665 Requirements Speci�cation 695.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 695.2 Work Product De�nition : : : : : : : : : : : : : : : : : : : : : : 705.2.1 Document sections : : : : : : : : : : : : : : : : : : : : : 705.2.2 The state machine section : : : : : : : : : : : : : : : : : 715.3 BSHAM Requirements Speci�cation : : : : : : : : : : : : : : : : 725.3.1 RS section: Overview : : : : : : : : : : : : : : : : : : : : 735.3.2 RS section: Environment variables : : : : : : : : : : : : 735.3.3 RS section: State machine : : : : : : : : : : : : : : : : : 745.3.3.1 Command-line invocation : : : : : : : : : : : : 745.3.3.2 Load phase : : : : : : : : : : : : : : : : : : : : 745.3.3.3 Execution phase : : : : : : : : : : : : : : : : : : 795.3.4 RS section: Expected changes : : : : : : : : : : : : : : : 845.3.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : 845.4 ISHAM Requirements Speci�cation : : : : : : : : : : : : : : : : 855.4.1 RS section: Overview : : : : : : : : : : : : : : : : : : : : 855.4.2 RS section: Environment variables : : : : : : : : : : : : 865.4.3 RS section: State machine : : : : : : : : : : : : : : : : : 865.4.3.1 Command-line invocation : : : : : : : : : : : : 865.4.3.2 Load phase : : : : : : : : : : : : : : : : : : : : 875.4.3.3 Execution phase : : : : : : : : : : : : : : : : : : 885.4.4 RS section: Expected changes : : : : : : : : : : : : : : : 885.4.5 Example : : : : : : : : : : : : : : : : : : : : : : : : : : : 885.4.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : 885.5 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 905.5.1 Veri�cation procedures : : : : : : : : : : : : : : : : : : : 905.5.2 Example: completeness of BSHAM execution phase : : : 915.5.2.1 Conditions cover all situations : : : : : : : : : : 925.5.2.2 Actions well de�ned : : : : : : : : : : : : : : : 925.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 935.7 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 936 Module Decomposition 956.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 956.2 Information Hiding : : : : : : : : : : : : : : : : : : : : : : : : : 966.2.1 The information-hiding technique : : : : : : : : : : : : : 966.2.2 An RS-driven approach to information hiding : : : : : : 976.3 Work Product De�nition : : : : : : : : : : : : : : : : : : : : : : 986.4 SHAM Module Guide : : : : : : : : : : : : : : : : : : : : : : : : 986.4.1 BSHAM module decomposition : : : : : : : : : : : : : : 986.4.2 ISHAM module decomposition : : : : : : : : : : : : : : : 1016.4.3 Module summary : : : : : : : : : : : : : : : : : : : : : : 103



viii CONTENTS6.5 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1036.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1056.7 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 1057 Module Interface Speci�cation 1077.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1077.2 Work Product De�nition : : : : : : : : : : : : : : : : : : : : : : 1087.2.1 Module interface speci�cation|syntax : : : : : : : : : : 1087.2.2 Module interface speci�cation|semantics : : : : : : : : : 1097.2.3 Exception signaling : : : : : : : : : : : : : : : : : : : : : 1107.3 Interface Design : : : : : : : : : : : : : : : : : : : : : : : : : : : 1117.3.1 Access routine idioms : : : : : : : : : : : : : : : : : : : : 1127.3.1.1 Set idioms : : : : : : : : : : : : : : : : : : : : : 1127.3.1.2 Sequence idioms : : : : : : : : : : : : : : : : : : 1127.3.1.3 Tuple idioms : : : : : : : : : : : : : : : : : : : 1137.3.2 Quality criteria : : : : : : : : : : : : : : : : : : : : : : : 1137.3.3 The symbol table (symtbl) MIS : : : : : : : : : : : : : : 1157.4 Modules with External Interaction : : : : : : : : : : : : : : : : : 1177.5 BSHAM Speci�cations : : : : : : : : : : : : : : : : : : : : : : : 1187.5.1 The token MIS : : : : : : : : : : : : : : : : : : : : : : : 1197.5.2 The absmach MIS : : : : : : : : : : : : : : : : : : : : : : 1207.5.3 The load MIS : : : : : : : : : : : : : : : : : : : : : : : : 1227.5.4 The exec MIS : : : : : : : : : : : : : : : : : : : : : : : : 1257.5.5 The sham MIS : : : : : : : : : : : : : : : : : : : : : : : 1257.6 ISHAM Speci�cations : : : : : : : : : : : : : : : : : : : : : : : : 1277.6.1 The keybdin MIS : : : : : : : : : : : : : : : : : : : : : : 1277.6.2 The scngeom MIS : : : : : : : : : : : : : : : : : : : : : : 1277.6.3 The scnstr MIS : : : : : : : : : : : : : : : : : : : : : : : 1297.6.4 The scndr MIS : : : : : : : : : : : : : : : : : : : : : : : 1347.7 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1347.8 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1387.9 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 1388 Module Internal Design 1398.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1398.2 Work Product De�nition : : : : : : : : : : : : : : : : : : : : : : 1408.2.1 The stack MID : : : : : : : : : : : : : : : : : : : : : : : 1408.3 State Invariants and Abstraction Functions : : : : : : : : : : : : 1428.3.1 The symtbl MID : : : : : : : : : : : : : : : : : : : : : : 1438.4 Modules with External Interaction : : : : : : : : : : : : : : : : : 1458.5 BSHAM Module Internal Designs : : : : : : : : : : : : : : : : : 1478.5.1 The token MID : : : : : : : : : : : : : : : : : : : : : : : 1478.5.2 The absmach MID : : : : : : : : : : : : : : : : : : : : : 1498.5.3 The load MID : : : : : : : : : : : : : : : : : : : : : : : : 149



CONTENTS ix8.5.4 The exec MID : : : : : : : : : : : : : : : : : : : : : : : : 1508.5.5 The sham MID : : : : : : : : : : : : : : : : : : : : : : : 1508.6 ISHAM Module Internal Designs : : : : : : : : : : : : : : : : : : 1508.6.1 The keybdin MID : : : : : : : : : : : : : : : : : : : : : : 1508.6.2 The scngeom MID : : : : : : : : : : : : : : : : : : : : : 1508.6.3 The scnstr MID : : : : : : : : : : : : : : : : : : : : : : : 1508.6.4 The scndr MID : : : : : : : : : : : : : : : : : : : : : : : 1518.7 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1518.7.1 Work product criteria : : : : : : : : : : : : : : : : : : : : 1518.7.2 Maintaining the state invariant : : : : : : : : : : : : : : 1528.7.3 Correctness of initial state : : : : : : : : : : : : : : : : : 1528.7.4 Access routine correctness : : : : : : : : : : : : : : : : : 1528.7.4.1 Set access routines : : : : : : : : : : : : : : : : 1528.7.4.2 Get access routines : : : : : : : : : : : : : : : : 1538.7.4.3 Set-get access routines : : : : : : : : : : : : : : 1538.7.5 Veri�cation of stack : : : : : : : : : : : : : : : : : : : : : 1538.7.5.1 Maintaining the state invariant : : : : : : : : : 1538.7.5.2 Correctness of initial state : : : : : : : : : : : : 1548.7.5.3 Access routine correctness : : : : : : : : : : : : 1548.7.5.4 Discussion : : : : : : : : : : : : : : : : : : : : : 1568.8 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1578.9 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 1579 Module Implementation 1599.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1599.2 Work Product De�nition : : : : : : : : : : : : : : : : : : : : : : 1609.2.1 Format : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1609.2.2 Modules in C : : : : : : : : : : : : : : : : : : : : : : : : 1619.2.3 Code format rules : : : : : : : : : : : : : : : : : : : : : : 1619.2.4 Default exception handlers : : : : : : : : : : : : : : : : : 1629.3 Stepwise Re�nement : : : : : : : : : : : : : : : : : : : : : : : : : 1629.3.1 Example: stack : : : : : : : : : : : : : : : : : : : : : : : 1639.3.2 Example: symtbl : : : : : : : : : : : : : : : : : : : : : : 1649.3.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : 1679.4 BSHAM Module Implementations : : : : : : : : : : : : : : : : : 1689.4.1 The token MI : : : : : : : : : : : : : : : : : : : : : : : : 1689.4.2 The absmach MI : : : : : : : : : : : : : : : : : : : : : : 1719.4.3 The load MI : : : : : : : : : : : : : : : : : : : : : : : : : 1739.4.4 Version control through conditional compilation : : : : : 1739.4.5 The exec MI : : : : : : : : : : : : : : : : : : : : : : : : : 1759.4.6 The sham MI : : : : : : : : : : : : : : : : : : : : : : : : 1759.5 ISHAM Module Implementations : : : : : : : : : : : : : : : : : : 1769.5.1 The keybdin MI : : : : : : : : : : : : : : : : : : : : : : : 1769.5.2 The scngeom MI : : : : : : : : : : : : : : : : : : : : : : 177



x CONTENTS9.5.3 The scnstr MI : : : : : : : : : : : : : : : : : : : : : : : : 1779.5.4 The scndr MI : : : : : : : : : : : : : : : : : : : : : : : : 1779.5.5 The exec MI : : : : : : : : : : : : : : : : : : : : : : : : : 1789.5.6 The sham MI : : : : : : : : : : : : : : : : : : : : : : : : 1799.6 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1799.6.1 Work product criteria : : : : : : : : : : : : : : : : : : : : 1799.6.2 MI satis�es module internal design : : : : : : : : : : : : 1809.6.2.1 Set access routines : : : : : : : : : : : : : : : : 1819.6.2.2 Get access routines : : : : : : : : : : : : : : : : 1819.6.2.3 Set-get access routines : : : : : : : : : : : : : : 1829.6.3 Absence of fatal errors : : : : : : : : : : : : : : : : : : : 1829.7 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1839.8 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 18410 Testing 18510.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18510.1.1 Systematic testing : : : : : : : : : : : : : : : : : : : : : : 18510.1.2 Testing tasks : : : : : : : : : : : : : : : : : : : : : : : : : 18610.1.3 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : 18610.2 Work Product De�nition : : : : : : : : : : : : : : : : : : : : : : 18710.2.1 Test plan : : : : : : : : : : : : : : : : : : : : : : : : : : : 18710.2.2 Test implementation : : : : : : : : : : : : : : : : : : : : 18710.3 Module and System Testing : : : : : : : : : : : : : : : : : : : : 18910.3.1 Top-down testing : : : : : : : : : : : : : : : : : : : : : : 18910.3.2 Bottom-up testing : : : : : : : : : : : : : : : : : : : : : : 19010.3.3 Top-down versus bottom-up testing : : : : : : : : : : : : 19010.4 Test Case Selection : : : : : : : : : : : : : : : : : : : : : : : : : 19110.4.1 Functional testing : : : : : : : : : : : : : : : : : : : : : : 19110.4.2 Structural testing : : : : : : : : : : : : : : : : : : : : : : 19210.4.3 Our approach : : : : : : : : : : : : : : : : : : : : : : : : 19410.5 Test Driver Generation : : : : : : : : : : : : : : : : : : : : : : : 19510.5.1 Test script language : : : : : : : : : : : : : : : : : : : : : 19510.5.2 Test program generation : : : : : : : : : : : : : : : : : : 19710.5.3 The stack TP and TI : : : : : : : : : : : : : : : : : : : : 19810.5.4 Embedded C code : : : : : : : : : : : : : : : : : : : : : : 19910.5.5 The symtbl TP and TI : : : : : : : : : : : : : : : : : : : 20110.5.6 Comparing actual and expected value : : : : : : : : : : : 20510.6 Design for Testability : : : : : : : : : : : : : : : : : : : : : : : : 20610.7 BSHAM Test Plans and Implementations : : : : : : : : : : : : : 20710.7.1 The token TP and TI : : : : : : : : : : : : : : : : : : : : 20710.7.2 The absmach TP and TI : : : : : : : : : : : : : : : : : : 20810.7.3 The load TP and TI : : : : : : : : : : : : : : : : : : : : 20910.7.4 The exec TP and TI : : : : : : : : : : : : : : : : : : : : 21310.7.5 The sham TP and TI : : : : : : : : : : : : : : : : : : : : 213



CONTENTS xi10.8 ISHAM Test Plans and Implementations : : : : : : : : : : : : : 21310.8.1 The keybdin TP and TI : : : : : : : : : : : : : : : : : : 21310.8.2 The scngeom TP and TI : : : : : : : : : : : : : : : : : : 21410.8.3 The scnstr TP and TI : : : : : : : : : : : : : : : : : : : 21410.8.4 The scndr TP and TI : : : : : : : : : : : : : : : : : : : : 21510.9 System Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21510.9.1 BSHAM : : : : : : : : : : : : : : : : : : : : : : : : : : : 21610.9.2 ISHAM : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21810.10 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21910.10.1 Test plan : : : : : : : : : : : : : : : : : : : : : : : : : : : 21910.10.2 Test implementation : : : : : : : : : : : : : : : : : : : : 21910.11 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22110.12 Bibliographic Notes : : : : : : : : : : : : : : : : : : : : : : : : : 222III Summary 22511 Conclusions 22711.1 Principles : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22711.2 Work Products : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22811.3 Practical Considerations : : : : : : : : : : : : : : : : : : : : : : 22811.4 SHAM Development History : : : : : : : : : : : : : : : : : : : : 23011.5 Object-Oriented Programming : : : : : : : : : : : : : : : : : : : 23111.5.1 OOP and BCOOP : : : : : : : : : : : : : : : : : : : : : 23111.5.2 Classifying a set module : : : : : : : : : : : : : : : : : : 23111.6 Parting Words : : : : : : : : : : : : : : : : : : : : : : : : : : : : 234IV Appendix 235A Requirements Speci�cations 237A.1 BSHAM Requirements Speci�cation : : : : : : : : : : : : : : : : 237A.1.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : 237A.1.1.1 System overview : : : : : : : : : : : : : : : : : 237A.1.1.2 Hardware and software environment : : : : : : 237A.1.1.3 Notation : : : : : : : : : : : : : : : : : : : : : : 237A.1.1.4 Document overview : : : : : : : : : : : : : : : : 238A.1.2 Environment variables : : : : : : : : : : : : : : : : : : : 238A.1.2.1 Input variables : : : : : : : : : : : : : : : : : : 238A.1.2.2 Output variables : : : : : : : : : : : : : : : : : 238A.1.3 State machine : : : : : : : : : : : : : : : : : : : : : : : : 238A.1.3.1 Command-line invocation : : : : : : : : : : : : 238A.1.3.2 Load phase : : : : : : : : : : : : : : : : : : : : 239A.1.3.3 Execution phase : : : : : : : : : : : : : : : : : : 240A.1.4 Constants : : : : : : : : : : : : : : : : : : : : : : : : : : 240



xii CONTENTSA.1.5 Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 240A.1.6 Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : 241A.1.7 Expected changes : : : : : : : : : : : : : : : : : : : : : : 241A.1.8 Sample programs : : : : : : : : : : : : : : : : : : : : : : 242A.1.9 Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : 243A.2 ISHAM Requirements Speci�cation : : : : : : : : : : : : : : : : 245A.2.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : 245A.2.1.1 System overview : : : : : : : : : : : : : : : : : 245A.2.1.2 Hardware and software environment : : : : : : 245A.2.1.3 Notation : : : : : : : : : : : : : : : : : : : : : : 245A.2.1.4 Document overview : : : : : : : : : : : : : : : : 245A.2.2 Environment variables : : : : : : : : : : : : : : : : : : : 245A.2.2.1 Input variables : : : : : : : : : : : : : : : : : : 245A.2.2.2 Output variables : : : : : : : : : : : : : : : : : 245A.2.3 State machine : : : : : : : : : : : : : : : : : : : : : : : : 247A.2.3.1 Command-line invocation : : : : : : : : : : : : 247A.2.3.2 Load phase : : : : : : : : : : : : : : : : : : : : 247A.2.3.3 Execution phase : : : : : : : : : : : : : : : : : : 247A.2.4 Constants : : : : : : : : : : : : : : : : : : : : : : : : : : 247A.2.5 Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 247A.2.6 Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : 247A.2.7 Expected changes : : : : : : : : : : : : : : : : : : : : : : 249B Module Guide 251B.1 Module Summary : : : : : : : : : : : : : : : : : : : : : : : : : : 251B.2 Module Service and Secret : : : : : : : : : : : : : : : : : : : : : 252B.2.1 Behavior-hiding modules : : : : : : : : : : : : : : : : : : 252B.2.1.1 The load module : : : : : : : : : : : : : : : : : 252B.2.1.2 The token module : : : : : : : : : : : : : : : : 252B.2.1.3 The absmach module : : : : : : : : : : : : : : : 252B.2.1.4 The scndr module : : : : : : : : : : : : : : : : 252B.2.1.5 The scngeom module : : : : : : : : : : : : : : : 252B.2.2 Software decision{hiding modules : : : : : : : : : : : : : 253B.2.2.1 The sham module : : : : : : : : : : : : : : : : 253B.2.2.2 The exec module : : : : : : : : : : : : : : : : : 253B.2.3 Machine-hiding modules : : : : : : : : : : : : : : : : : : 253B.2.3.1 The keybdin module : : : : : : : : : : : : : : : 253B.2.3.2 The scnstr module : : : : : : : : : : : : : : : : 253C Module Interface Speci�cations 255C.1 Global De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : 255C.1.1 system.h : : : : : : : : : : : : : : : : : : : : : : : : : : : 255C.2 BSHAM Modules : : : : : : : : : : : : : : : : : : : : : : : : : : 256C.2.1 absmach MIS : : : : : : : : : : : : : : : : : : : : : : : : 256



CONTENTS xiiiC.2.1.1 Interface syntax : : : : : : : : : : : : : : : : : : 256C.2.1.2 Interface semantics : : : : : : : : : : : : : : : : 256C.2.1.3 Header �le: absmach.h : : : : : : : : : : : : : : 257C.2.2 exec MIS : : : : : : : : : : : : : : : : : : : : : : : : : : : 258C.2.2.1 Interface syntax : : : : : : : : : : : : : : : : : : 258C.2.2.2 Interface semantics : : : : : : : : : : : : : : : : 258C.2.2.3 Header �le: exec.h : : : : : : : : : : : : : : : : 259C.2.3 load MIS : : : : : : : : : : : : : : : : : : : : : : : : : : : 259C.2.3.1 Interface syntax : : : : : : : : : : : : : : : : : : 259C.2.3.2 Interface semantics : : : : : : : : : : : : : : : : 260C.2.3.3 Header �le: load.h : : : : : : : : : : : : : : : : 260C.2.4 sham MIS : : : : : : : : : : : : : : : : : : : : : : : : : : 261C.2.5 token MIS : : : : : : : : : : : : : : : : : : : : : : : : : : 261C.2.5.1 Interface syntax : : : : : : : : : : : : : : : : : : 261C.2.5.2 Interface semantics : : : : : : : : : : : : : : : : 261C.2.5.3 Header �le: token.h : : : : : : : : : : : : : : : 262C.3 ISHAM Modules : : : : : : : : : : : : : : : : : : : : : : : : : : : 263C.3.1 keybdin MIS : : : : : : : : : : : : : : : : : : : : : : : : : 263C.3.1.1 Interface syntax : : : : : : : : : : : : : : : : : : 263C.3.1.2 Interface semantics : : : : : : : : : : : : : : : : 263C.3.1.3 Header �le: keybdin.h : : : : : : : : : : : : : : 264C.3.2 scndr MIS : : : : : : : : : : : : : : : : : : : : : : : : : : 265C.3.2.1 Interface syntax : : : : : : : : : : : : : : : : : : 265C.3.2.2 Interface semantics : : : : : : : : : : : : : : : : 265C.3.2.3 Header �le: scndr.h : : : : : : : : : : : : : : : 266C.3.3 scngeom MIS : : : : : : : : : : : : : : : : : : : : : : : : 267C.3.3.1 Interface syntax : : : : : : : : : : : : : : : : : : 267C.3.3.2 Interface semantics : : : : : : : : : : : : : : : : 268C.3.3.3 Header �le: scngeom.h : : : : : : : : : : : : : : 269C.3.4 scnstr MIS : : : : : : : : : : : : : : : : : : : : : : : : : : 270C.3.4.1 Interface syntax : : : : : : : : : : : : : : : : : : 270C.3.4.2 Interface semantics : : : : : : : : : : : : : : : : 270C.3.4.3 Header �le: scnstr.h : : : : : : : : : : : : : : 272C.4 Demonstration Modules : : : : : : : : : : : : : : : : : : : : : : : 273C.4.1 stack MIS : : : : : : : : : : : : : : : : : : : : : : : : : : 273C.4.1.1 Interface syntax : : : : : : : : : : : : : : : : : : 273C.4.1.2 Interface semantics : : : : : : : : : : : : : : : : 273C.4.1.3 Header �le: stack.h : : : : : : : : : : : : : : : 273C.4.2 symtbl MIS : : : : : : : : : : : : : : : : : : : : : : : : : 274C.4.2.1 Interface syntax : : : : : : : : : : : : : : : : : : 274C.4.2.2 Interface semantics : : : : : : : : : : : : : : : : 274C.4.2.3 Header �le: symtbl.h : : : : : : : : : : : : : : 275



xiv CONTENTSD Module Internal Designs 277D.1 BSHAM Modules : : : : : : : : : : : : : : : : : : : : : : : : : : 277D.1.1 absmach MID : : : : : : : : : : : : : : : : : : : : : : : : 277D.1.2 exec MID : : : : : : : : : : : : : : : : : : : : : : : : : : 277D.1.3 load MID : : : : : : : : : : : : : : : : : : : : : : : : : : : 277D.1.4 sham MID : : : : : : : : : : : : : : : : : : : : : : : : : : 277D.1.5 token MID : : : : : : : : : : : : : : : : : : : : : : : : : : 278D.2 ISHAM Modules : : : : : : : : : : : : : : : : : : : : : : : : : : : 279D.2.1 keybdin MID : : : : : : : : : : : : : : : : : : : : : : : : : 279D.2.2 scndr MID : : : : : : : : : : : : : : : : : : : : : : : : : : 279D.2.3 scngeom MID : : : : : : : : : : : : : : : : : : : : : : : : 279D.2.4 scnstr MID : : : : : : : : : : : : : : : : : : : : : : : : : 279D.3 Demonstration Modules : : : : : : : : : : : : : : : : : : : : : : : 279D.3.1 stack MID : : : : : : : : : : : : : : : : : : : : : : : : : : 279D.3.2 symtbl MID : : : : : : : : : : : : : : : : : : : : : : : : : 280E Module Implementations 283E.1 BSHAM Modules : : : : : : : : : : : : : : : : : : : : : : : : : : 283E.1.1 absmach MI : : : : : : : : : : : : : : : : : : : : : : : : : 283E.1.1.1 Module implementation: absmach.c : : : : : : 283E.1.1.2 Default exception handlers: absmach e.c : : : 287E.1.2 exec MI : : : : : : : : : : : : : : : : : : : : : : : : : : : 287E.1.2.1 Module implementation: exec.c : : : : : : : : 287E.1.2.2 Default exception handlers : : : : : : : : : : : : 290E.1.3 load MI : : : : : : : : : : : : : : : : : : : : : : : : : : : : 290E.1.3.1 Module implementation: load.c : : : : : : : : 290E.1.3.2 Default exception handlers: load e.c : : : : : : 294E.1.4 sham MI : : : : : : : : : : : : : : : : : : : : : : : : : : : 294E.1.4.1 Module implementation: sham.c : : : : : : : : 294E.1.4.2 Default exception handlers : : : : : : : : : : : : 296E.1.5 token MI : : : : : : : : : : : : : : : : : : : : : : : : : : : 296E.1.5.1 Module implementation: token.c : : : : : : : : 296E.1.5.2 Default exception handlers: token e.c : : : : : 299E.2 ISHAM Modules : : : : : : : : : : : : : : : : : : : : : : : : : : : 299E.2.1 keybdin MI : : : : : : : : : : : : : : : : : : : : : : : : : 299E.2.1.1 Module implementation: keybdin.c : : : : : : 299E.2.1.2 Default exception handlers : : : : : : : : : : : : 300E.2.2 scndr MI : : : : : : : : : : : : : : : : : : : : : : : : : : : 300E.2.2.1 Module implementation: scndr.c : : : : : : : : 300E.2.2.2 Default exception handlers : : : : : : : : : : : : 304E.2.3 scngeom MI : : : : : : : : : : : : : : : : : : : : : : : : : 304E.2.3.1 Module implementation: scngeom.c : : : : : : 304E.2.3.2 Default exception handlers: scngeom e.c : : : 306E.2.4 scnstr MI : : : : : : : : : : : : : : : : : : : : : : : : : : 307



CONTENTS xvE.2.4.1 Module implementation: scnstr.c : : : : : : : 307E.2.4.2 Default exception handlers: scnstr e.c : : : : 309E.3 Demonstration Modules : : : : : : : : : : : : : : : : : : : : : : : 309E.3.1 stack MI : : : : : : : : : : : : : : : : : : : : : : : : : : : 309E.3.1.1 Module implementation: stack.c : : : : : : : : 309E.3.1.2 Default exception handlers: stack e.c : : : : : 311E.3.2 symtbl MI : : : : : : : : : : : : : : : : : : : : : : : : : : 311E.3.2.1 Module implementation: symtbl.c : : : : : : : 311E.3.2.2 Default exception handlers: symtbl e.c : : : : 313F Test Plans and Implementations 315F.1 BSHAM Modules : : : : : : : : : : : : : : : : : : : : : : : : : : 315F.1.1 absmach TP and TI : : : : : : : : : : : : : : : : : : : : 315F.1.1.1 Test plan : : : : : : : : : : : : : : : : : : : : : 315F.1.1.2 Test implementation : : : : : : : : : : : : : : : 316F.1.2 exec TP : : : : : : : : : : : : : : : : : : : : : : : : : : : 322F.1.2.1 Test plan : : : : : : : : : : : : : : : : : : : : : 322F.1.3 load TP and TI : : : : : : : : : : : : : : : : : : : : : : : 323F.1.3.1 Test plan : : : : : : : : : : : : : : : : : : : : : 323F.1.3.2 Test implementation : : : : : : : : : : : : : : : 323F.1.4 sham TP : : : : : : : : : : : : : : : : : : : : : : : : : : : 330F.1.4.1 Test plan : : : : : : : : : : : : : : : : : : : : : 330F.1.5 token TP and TI : : : : : : : : : : : : : : : : : : : : : : 330F.1.5.1 Test plan : : : : : : : : : : : : : : : : : : : : : 330F.1.5.2 Test implementation : : : : : : : : : : : : : : : 331F.2 ISHAM Modules : : : : : : : : : : : : : : : : : : : : : : : : : : : 336F.2.1 keybdin TP and TI : : : : : : : : : : : : : : : : : : : : : 336F.2.1.1 Test plan : : : : : : : : : : : : : : : : : : : : : 336F.2.1.2 Test implementation : : : : : : : : : : : : : : : 336F.2.2 scndr TP and TI : : : : : : : : : : : : : : : : : : : : : : 337F.2.2.1 Test plan : : : : : : : : : : : : : : : : : : : : : 337F.2.2.2 Test implementation : : : : : : : : : : : : : : : 338F.2.3 scngeom TP and TI : : : : : : : : : : : : : : : : : : : : 340F.2.3.1 Test plan : : : : : : : : : : : : : : : : : : : : : 340F.2.3.2 Test implementation : : : : : : : : : : : : : : : 341F.2.4 scnstr TP and TI : : : : : : : : : : : : : : : : : : : : : : 344F.2.4.1 Test plan : : : : : : : : : : : : : : : : : : : : : 344F.2.4.2 Test implementation : : : : : : : : : : : : : : : 345F.3 System Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : 348F.3.1 BSHAM system TP and TI : : : : : : : : : : : : : : : : 348F.3.1.1 Test plan : : : : : : : : : : : : : : : : : : : : : 348F.3.1.2 Test implementation : : : : : : : : : : : : : : : 349F.3.2 ISHAM system TP and TI : : : : : : : : : : : : : : : : : 352F.3.2.1 Test plan : : : : : : : : : : : : : : : : : : : : : 352



xvi CONTENTSF.4 Demonstration Modules : : : : : : : : : : : : : : : : : : : : : : : 353F.4.1 stack TP and TI : : : : : : : : : : : : : : : : : : : : : : 353F.4.1.1 Test plan : : : : : : : : : : : : : : : : : : : : : 353F.4.1.2 Test implementation : : : : : : : : : : : : : : : 354F.4.2 symtbl TP and TI : : : : : : : : : : : : : : : : : : : : : : 357F.4.2.1 Test plan : : : : : : : : : : : : : : : : : : : : : 357F.4.2.2 Test implementation : : : : : : : : : : : : : : : 358G Code Format Rules 365G.1 Identi�er names : : : : : : : : : : : : : : : : : : : : : : : : : : : 365G.2 Coding style : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 365H Exercises 367H.1 Chapter 2: Software Engineering Fundamentals : : : : : : : : : 367H.2 Chapter 3: Mathematical Fundamentals : : : : : : : : : : : : : : 368H.3 Chapter 5: Requirements Speci�cation : : : : : : : : : : : : : : 375H.4 Chapter 6: Module Decomposition : : : : : : : : : : : : : : : : : 377H.5 Chapter 7: Module Interface Speci�cation : : : : : : : : : : : : : 377H.6 Chapter 8: Module Internal Design : : : : : : : : : : : : : : : : 379H.7 Chapter 9: Module Implementation : : : : : : : : : : : : : : : : 381H.8 Chapter 10: Testing : : : : : : : : : : : : : : : : : : : : : : : : : 382Bibliography 385Index 391



List of Figures1.1 Waterfall model of the software lifecycle : : : : : : : : : : : : : 91.2 Iterative waterfall model of the software lifecycle : : : : : : : : 101.3 Software qualities : : : : : : : : : : : : : : : : : : : : : : : : : : 162.1 Work product summary : : : : : : : : : : : : : : : : : : : : : : 262.2 The speci�cation trichotomy : : : : : : : : : : : : : : : : : : : : 263.1 Counter �nite state machine : : : : : : : : : : : : : : : : : : : : 513.2 list module state machine|semantics : : : : : : : : : : : : : : : 553.3 elist module state machine|semantics : : : : : : : : : : : : : : 585.1 Requirements speci�cation sections : : : : : : : : : : : : : : : : 725.2 BSHAM dataow diagram : : : : : : : : : : : : : : : : : : : : : 735.3 Constants and types : : : : : : : : : : : : : : : : : : : : : : : : 755.4 Load-phase FSM : : : : : : : : : : : : : : : : : : : : : : : : : : 775.5 Types for classifying source code instructions : : : : : : : : : : 785.6 BSHAM execution-phase FSM : : : : : : : : : : : : : : : : : : : 815.7 Types for classifying object code instructions : : : : : : : : : : 825.8 BSHAM expected changes : : : : : : : : : : : : : : : : : : : : : 845.9 ISHAM dataow diagram : : : : : : : : : : : : : : : : : : : : : 855.10 Screen format : : : : : : : : : : : : : : : : : : : : : : : : : : : : 875.11 ISHAM execution-phase FSM : : : : : : : : : : : : : : : : : : : 895.12 ISHAM expected changes : : : : : : : : : : : : : : : : : : : : : 895.13 Example: scn contents for 2 + 2 program : : : : : : : : : : : : : 905.14 Requirements speci�cation criteria : : : : : : : : : : : : : : : : 916.1 Module guide sections : : : : : : : : : : : : : : : : : : : : : : : 986.2 SHAM module guide|BSHAM module service and secret : : : 1006.3 BSHAM dataow diagram : : : : : : : : : : : : : : : : : : : : : 1016.4 SHAM module guide|ISHAM module service and secret : : : : 1026.5 ISHAM dataow diagram : : : : : : : : : : : : : : : : : : : : : 1036.6 SHAM module guide|module summary : : : : : : : : : : : : : 1046.7 Module guide criteria : : : : : : : : : : : : : : : : : : : : : : : : 105xvii



xviii LIST OF FIGURES7.1 stack module interface speci�cation|semantics : : : : : : : : : 1107.2 stack exceptions|s pop implementation : : : : : : : : : : : : : 1117.3 symtbl module interface speci�cation|semantics : : : : : : : : 1177.4 token module interface speci�cation|semantics : : : : : : : : : 1217.5 absmach module interface speci�cation|semantics : : : : : : : 1237.6 load module interface speci�cation|semantics : : : : : : : : : : 1247.7 exec module interface speci�cation|semantics : : : : : : : : : : 1267.8 keybdin module interface speci�cation|semantics : : : : : : : : 1287.9 scngeom module interface speci�cation|semantics : : : : : : : 1307.10 scnstr module interface speci�cation|semantics part 1 : : : : : 1327.11 scnstr module interface speci�cation|semantics part 2 : : : : : 1337.12 scndr module interface speci�cation|semantics : : : : : : : : : 1357.13 Module interface speci�cation criteria : : : : : : : : : : : : : : : 1377.14 Su�ciency: token module interface speci�cation : : : : : : : : : 1378.1 stack module internal design : : : : : : : : : : : : : : : : : : : : 1418.2 symtbl module internal design : : : : : : : : : : : : : : : : : : : 1448.3 token module internal design : : : : : : : : : : : : : : : : : : : 1488.4 absmach module internal design : : : : : : : : : : : : : : : : : : 1498.5 Module internal design criteria : : : : : : : : : : : : : : : : : : : 1518.6 Transition and output commuting diagrams : : : : : : : : : : : 1538.7 stack module internal design|s push transition correctness : : 1558.8 stack module internal design|s pop transition correctness : : : 1558.9 stack module internal design|g top output correctness : : : : 1568.10 stack module internal design|g siz output correctness : : : : 1569.1 stack module implementation|s push : : : : : : : : : : : : : : 1609.2 stack module implementation|g dump : : : : : : : : : : : : : : 1619.3 stack|default exception handlers : : : : : : : : : : : : : : : : : 1629.4 stack module internal design|s push : : : : : : : : : : : : : : 1639.5 stack|�rst re�nement of s push : : : : : : : : : : : : : : : : : 1639.6 stack|alternative �rst re�nement of s push : : : : : : : : : : : 1649.7 symtbl module internal design|s add : : : : : : : : : : : : : : 1659.8 symtbl|re�nement of s add : : : : : : : : : : : : : : : : : : : : 1659.9 symtbl module implementation|s add : : : : : : : : : : : : : : 1679.10 symtbl|re�nement of findsym : : : : : : : : : : : : : : : : : : 1689.11 token module internal design : : : : : : : : : : : : : : : : : : : 1699.12 token module implementation|s str : : : : : : : : : : : : : : 1699.13 token module implementation|sg next : : : : : : : : : : : : : 1719.14 token module implementation|after the loop in sg next : : : : 1729.15 absmach module interface speci�cation|sg exec : : : : : : : : 1739.16 absmach module implementation|execexc : : : : : : : : : : : 1749.17 exec module implementation|s exec : : : : : : : : : : : : : : 1769.18 scnstr module implementation|s hlt : : : : : : : : : : : : : : 178



LIST OF FIGURES xix9.19 exec module implementation|loop for s exec : : : : : : : : : : 1799.20 Module implementation criteria : : : : : : : : : : : : : : : : : : 1809.21 stack|s push internal design and implementation : : : : : : : 1819.22 stack|g top internal design and implementation : : : : : : : : 18210.1 stack interactive driver|main : : : : : : : : : : : : : : : : : : : 18810.2 Implementation of tst : : : : : : : : : : : : : : : : : : : : : : : 19310.3 Faulty implementation of tst : : : : : : : : : : : : : : : : : : : 19410.4 stack test plan|test case selection strategy : : : : : : : : : 19510.5 stack|small test script : : : : : : : : : : : : : : : : : : : : : : : 19610.6 PGMGEN system owchart : : : : : : : : : : : : : : : : : : : : 19710.7 Steps performed for a PGMGEN test case : : : : : : : : : : : : 19810.8 stack test plan : : : : : : : : : : : : : : : : : : : : : : : : : : : 19910.9 stack test implementation : : : : : : : : : : : : : : : : : : : : : 20010.10 stack|output produced by test script : : : : : : : : : : : : : : 20110.11 symtbl test plan|normal case test cases : : : : : : : : : : : : : 20210.12 symtbl test implementation|normal case test cases : : : : : : : 20410.13 cmp bool and prt bool : : : : : : : : : : : : : : : : : : : : : : 20510.14 cmp fuzz and prt fuzz : : : : : : : : : : : : : : : : : : : : : : 20610.15 token test implementation|cmp valtyp and prt valtyp : : : : 20810.16 load test plan|test environment : : : : : : : : : : : : : : : : 20910.17 load test plan|test case selection strategy : : : : : : : : : 21010.18 load test implementation|part of test case : : : : : : : : : : : 21110.19 load test implementation|stubs for am s mem and am g mem : : 21110.20 load test implementation|stub for ex s exec : : : : : : : : : : 21210.21 load test implementation|expected output : : : : : : : : : : : 21210.22 load test implementation|shell commands : : : : : : : : : : : : 21210.23 BSHAM test plan|part 1 : : : : : : : : : : : : : : : : : : : : : 21710.24 BSHAM test plan|part 2 : : : : : : : : : : : : : : : : : : : : : 21810.25 Test plan criteria : : : : : : : : : : : : : : : : : : : : : : : : : : 22010.26 Test implementation criteria : : : : : : : : : : : : : : : : : : : : 22111.1 Work product summary : : : : : : : : : : : : : : : : : : : : : : 22811.2 sset class declaration : : : : : : : : : : : : : : : : : : : : : : : 23211.3 iset class declaration : : : : : : : : : : : : : : : : : : : : : : : 23311.4 tset class declaration : : : : : : : : : : : : : : : : : : : : : : : 233A.1 Load-phase FSM : : : : : : : : : : : : : : : : : : : : : : : : : : 239A.2 BSHAM execution-phase FSM : : : : : : : : : : : : : : : : : : : 240A.3 Screen format : : : : : : : : : : : : : : : : : : : : : : : : : : : : 246A.4 ISHAM execution-phase FSM : : : : : : : : : : : : : : : : : : : 248H.1 sset module state machine|semantics : : : : : : : : : : : : : : 374H.2 iset module state machine|semantics : : : : : : : : : : : : : : 375





List of Tables2.1 stack interface syntax : : : : : : : : : : : : : : : : : : : : : : : : 242.2 Testing versus inspection : : : : : : : : : : : : : : : : : : : : : : : 313.1 Truth table for the logical connectives : : : : : : : : : : : : : : : 383.2 Truth table for :(:p _ :q) : : : : : : : : : : : : : : : : : : : : : 393.3 Quanti�ers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 403.4 Operations on integer : : : : : : : : : : : : : : : : : : : : : : : : 423.5 Operations on strings (s, s1, and s2 are strings) : : : : : : : : : : 423.6 Operations on sets : : : : : : : : : : : : : : : : : : : : : : : : : : 433.7 Operations on sequences (s, s1, and s2 are sequences) : : : : : : 453.8 Operations on tuples : : : : : : : : : : : : : : : : : : : : : : : : : 463.9 Examples of multiple assignment statements : : : : : : : : : : : : 473.10 Meaning of example multiple assignment statements : : : : : : : 483.11 Tabular form for conditional rule de�ning minimum function : : 503.12 Tabular form for conditional rule de�ning sorting of two variables 503.13 Tabular form for conditional rule de�ning lexicographic order : : 503.14 Transition function for counter �nite state machine : : : : : : : : 523.15 Event-output function for counter �nite state machine : : : : : : 523.16 Condition-output function for counter �nite state machine : : : : 533.17 list module state machine|access routines : : : : : : : : : : : : 543.18 list module state machine|execution tables (N = 3) : : : : : : : 563.19 Module state machines|semantics summary : : : : : : : : : : : 573.20 elist module state machine|access routines : : : : : : : : : : : : 573.21 elist module state machine|execution tables (N = 3) : : : : : : 583.22 elist module state machine|execution tables (N = 3) : : : : : : 594.1 SHAM instruction set : : : : : : : : : : : : : : : : : : : : : : : : 655.1 BSHAM exceptions|excidT and excmsg : : : : : : : : : : : : : 755.2 Language syntax table : : : : : : : : : : : : : : : : : : : : : : : : 765.3 Example: the 2 + 2 program : : : : : : : : : : : : : : : : : : : : : 785.4 Load-phase exception table : : : : : : : : : : : : : : : : : : : : : 785.5 Example: load-phase exceptions : : : : : : : : : : : : : : : : : : : 795.6 Language semantics table (op = mem[pc+ 1]) : : : : : : : : : : : 81xxi



xxii LIST OF TABLES5.7 Execution-phase exception table : : : : : : : : : : : : : : : : : : 835.8 Example: execution-phase exception : : : : : : : : : : : : : : : : 837.1 stack module interface speci�cation|syntax : : : : : : : : : : : : 1097.2 set access routine idioms|syntax : : : : : : : : : : : : : : : : : : 1127.3 sequence access routine idioms|syntax : : : : : : : : : : : : : : 1137.4 tuple access routine idioms|syntax : : : : : : : : : : : : : : : : 1147.5 symtbl module interface speci�cation|syntax : : : : : : : : : : : 1167.6 token module interface speci�cation|syntax : : : : : : : : : : : 1197.7 absmach module interface speci�cation|syntax : : : : : : : : : : 1227.8 load module interface speci�cation|syntax : : : : : : : : : : : : 1247.9 exec module interface speci�cation|syntax : : : : : : : : : : : : 1257.10 keybdin module interface speci�cation|syntax : : : : : : : : : : 1277.11 scngeom module interface speci�cation|syntax : : : : : : : : : : 1297.12 scnstr module interface speci�cation|syntax : : : : : : : : : : : 1317.13 scndr module interface speci�cation|syntax : : : : : : : : : : : 1348.1 stack module internal design|execution tables (PS MAXSIZ = 3) 1429.1 token module implementation|state machine : : : : : : : : : : : 17010.1 Top-down testing of BSHAM : : : : : : : : : : : : : : : : : : : : 19010.2 Bottom-up testing of BSHAM : : : : : : : : : : : : : : : : : : : : 190A.1 Language syntax table : : : : : : : : : : : : : : : : : : : : : : : : 243A.2 Language semantics table (op = mem[pc+ 1]) : : : : : : : : : : : 243A.3 Load-phase exception table : : : : : : : : : : : : : : : : : : : : : 244A.4 Execution-phase exception table : : : : : : : : : : : : : : : : : : 244H.1 Transition function for FSM exercise : : : : : : : : : : : : : : : : 372H.2 sset module state machine|access routines : : : : : : : : : : : : 373H.3 iset module state machine|access routines : : : : : : : : : : : : 374



PrefaceMany Software Engineering survey texts are available on the market. These textshave become the de facto standard for teaching the undergraduate SoftwareEngineering courses required in most Computer Science departments. Whilesurvey texts are useful for reference, serious problems arise when they are usedto teach the fundamentals of Software Engineering.� Too many topics, too little depth. Survey texts present a little about a lot oftopics, from algebraic speci�cation to Z. The examples are super�cial andthe notations are inconsistent from one topic to the next. Consequently,the students never achieve much skill with any particular technique. Littleof practical value is gained.� Designed for experts. Survey books can work well with a Software Engi-neering expert as instructor; the course is based on his or her personal expe-rience and the text is used as auxiliary reading. In practice, the instructoris frequently not a Software Engineering expert. Many departments haveno such expert; few have enough to teach all the course sections required.For the non-expert, a survey text o�ers too little support. There is toomuch material to teach. Research topics are mixed with practical methods,and no clear distinction is made between the two. The examples are fewand mostly trivial. The exercises are hard to grade fairly and e�ciently,especially if the grading is done by a teaching assistant. With only surveytexts available, most non-experts dread the prospect of teaching SoftwareEngineering.� Software maintenance not taught e�ectively. It is well known that mainte-nance is a critical topic. Working programmers spend most of their timemaintaining existing systems, not writing new ones. Teaching maintenanceis extremely di�cult with a survey text. Maintenance assignments are sim-ply not an option without a target system to maintain. Consequently, onlygeneral maintenance principles can be taught.Our goal is to complement the broad surveys found in most texts with amore focused approach. Rather than survey Software Engineering research andpractice, we pursue mastery of a small set of fundamental concepts and skills.xxiii



xxiv PREFACEWe present practical methods, ready for use in industry now. We focus onmaintenance, emphasizing reading over writing and modi�cation over new de-velopment. We show how to design, document, and test software to reducemaintenance costs.In developing these themes, we make extensive use of a fully worked, non-trivial case study. Intentionally, the case study is small by industrial standards.It is carefully constructed to be as simple as possible while still being su�cientlycomplex to illustrate the methods. Despite its small size, it gives rise to surpris-ingly subtle issues in speci�cation, design, veri�cation, and maintenance. Wehave made the case study available online, so students can get hands-on ex-perience running and modifying the code, documentation, and automated testscripts. As a result, the text is well-suited for classroom use and for self-study.Scaling UpScalability is an important concern in Software Engineering education. Toooften, the methods taught are not applicable in industry. We know that themethods we teach scale up because they are scaled-down versions of methods inindustrial use now:� Our work products are based on the those used in the Software Cost Re-duction project led by David Parnas [1, 2].� Our notations and inspection methods are based on those used in theCleanroom method pioneered by Harlan Mills [3, 4].� Our methods for system testing follow standard practice in industry. Be-cause automated module testing is not a standard industrial practice, ourapproach to module testing is novel. Nonetheless, it has seen industrialapplication [5, 6, 7].Object-Oriented ProgrammingWe take a practical approach to object-oriented programming (OOP). OOP isbased on encapsulation, inheritance, and polymorphism, as supplied by lan-guages such as C++ and SmallTalk. In this text, we use Base Class Object-Oriented Programming (BCOOP). BCOOP uses only encapsulation and can becarried out using C, Pascal, and even FORTRAN; the separate compilation fa-cilities of these languages provide adequate support for encapsulation. Whileinheritance and polymorphism are important concepts, there are signi�cant ad-vantages to BCOOP. From a teaching perspective, it is critical to recognize thecomplexity of full OOP. Because an entire course can be devoted to teaching justthe required language features, we cannot teach full OOP without sacri�cing es-sential Software Engineering material. Of the three concepts|encapsulation,



PREFACE xxvinheritance, and polymorphism|encapsulation is certainly the most importantconcept and the one that should be taught �rst. From an industrial perspective,BCOOP is also attractive. It applies to the huge quantity of existing code in C,Pascal, and FORTRAN; it is well-understood, having been studied extensivelyfor over 20 years. In contrast, industrial use of full OOP is still relatively limited;the languages, tools, and techniques change frequently and development is fullof surprises. The payo� for success is high, but so is the risk of failure. BCOOPprovides an attractive migration path, using, for example, BCOOP and C now,and full OOP and C++ later. In summary, we teach OOP throughout the text,but only the BCOOP subset.Tool SupportWe also take a practical approach to Software Engineering tools, to make the textreadily accessible to a wide audience and to focus on fundamental principles andtechniques, rather than particular tool features. Thus, we rely on the \softwaredevelopment environment" available on today's UNIX systems. We store andaccess system con�gurations using the UNIX �le system and the vi editor; webuild executable programs using the C compiler and the make utility; and wemake use of standard libraries, primarily stdio and curses. We also use a simpletest driver generator, developed by the authors because no equivalent tool couldbe found on the market.Text OrganizationThe text is organized as follows: Chapter 1 provides a broad survey of SoftwareEngineering issues, principles, and methods. A variety of lifecycle approaches aredescribed. Project management, development methods, quality assurance, andtools are discussed. Chapter 2 presents a carefully selected set of documentationprinciples and work products, based on the \rational approach" proposed byParnas [1]. Chapter 2 also covers inspection and testing, the two veri�cationmethods in widespread use in industry today.Chapter 3 presents the discrete mathematics concepts used to support thework products of Chapter 2. Sets, relations, functions, logic, and �nite statemachines (FSMs) are covered. Chapter 3 also presents Module State Machines,a special kind of FSM designed for specifying software modules. In this chapter,and throughout the text, we focus on speci�cation functions : functions that arisenaturally in software speci�cations. To represent speci�cation functions, we relyheavily on the multiple assignment statement and conditional rule popularizedby Mills and others in the Cleanroom approach [3].Chapter 4 introduces the SHAM system: the example used throughout thetext. SHAM (Strooper-Ho�man Abstract Machine) provides a load-and-go in-terpreter for a toy assembly language. Two versions of SHAM are presented;



xxvi PREFACEBSHAM is batch oriented, while ISHAM provides an interactive interface. SHAMis small enough to learn easily and yet complex enough to present challengingproblems in design and veri�cation.Each of Chapters 5{10 covers a di�erent work product. Each chapter presentsthe work product purpose, required format, and inspection procedures, illus-trated in detail on examples from SHAM.Part III contains a single chapter, summarizing the key ideas and discussingpractical considerations: what happens when these techniques are applied tolarge systems under realistic conditions? Inevitably, principles are compromised,work products are omitted, and the development chronology does not follow theideal. Part III also contains a discussion of polymorphism and inheritance inC++.Internet AccessSubstantial supporting materials are available online, including the contents ofAppendices A{F, a full set of overhead slides, and the PGMGEN testing tooldescribed in Chapter 10. To retrieve copies using FTP, �nd a machine on theInternet and type:% ftp godot.uvic.caName (godot.uvic.ca:...): anonymousPassword:<your email address for our log file>...ftp> cd pub/dhoffman/SDATMftp> get README(For those without Internet name server access, use IP address 142.104.88.101.)Consult the README �le for information on the available materials.The authors can be reached by electronic mail at dhoffman@csr.uvic.caand pstroop@cs.uq.oz.au.AcknowledgmentsThis text is based on the course CSC 365|Software Engineering as taught at theUniversity of Victoria for the past 10 years. The students of CSC 365 have madesigni�cant contributions to the text by �nding errors and, more importantly, byshowing us what works and what does not in Software Engineering education.Many others have also contributed to this project. In particular, we would liketo thank David Carrington, Helen Cheung, Byron Ehle, Maarten van Emden,Jerome Ho�man, Hausi M�uller, Kelvin Ross, Terry Shepard, Peter Walsh, andColin Wortley.
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Chapter 1Introduction1.1 The Software Engineering ProblemWe all depend on computers in many aspects of our business and leisure ac-tivities. Today's companies cannot run without computer-based informationsystems. The telephone network could not operate without computers. Com-puters are widely used in safety-critical applications including medical devices,automobiles, aircraft, and industrial process control. In these types of applica-tions, software failures can cause injury or loss of life. It is di�cult to picture theconsequences if all the world's computers were to fail now. While this event is un-likely, imagining it highlights the extent to which computers have permeated ourlives. Because the inuence of computer systems is so widespread, it is impor-tant that these systems be useful, a�ordable, and reliable. While both hardwareand software are essential, hardware development is far more advanced. Despiteimportant and di�cult open problems, the power and reliability of hardware areimpressive and improving; the costs are low and dropping. As the weak link,software is the critical factor in achieving the required system characteristics.Thus, we all depend on well-engineered software. But what exactly is Soft-ware Engineering? It is signi�cantly di�erent from solo programming , where thesame person is both developer and maintainer, there is one version|the currentone|and the user is the programmer or someone nearby. Software Engineeringis well characterized as multi-person/multi-version programming [8].In multi-person programming, the systems are too big to be developed byone person. Teams are required, consisting of tens or hundreds of people. Thesystems are in operation for years after development and must be maintained,typically by people who are not part of the development team. With program-ming teams, precise speci�cation of the product is critical so that the teammembers agree on the characteristics of the system being built. The develop-ment task must be divided into modules so that the work can be split amongthe di�erent developers. Precise speci�cation of the modules is also critical so3



4 Chapter 1 INTRODUCTIONthat they interact correctly. Finally, each module and the full system must beveri�ed against its speci�cation. Without veri�cation, adequate reliability isunattainable.Multi-person systems invariably have multiple versions as well. Often thesame system must run on di�erent platforms, distinguished by di�erences in thehardware and operating system. After installation, modi�cations are inevitableto �x errors and to adapt to changes in user requirements and in the underlyingplatform. Successful development of multi-version systems depends on the abilityto predict the types of changes likely to occur and to develop systems for whichthose changes are easy to make. Careful control of the multiple versions is alsoessential. Multiple copies of code and documentation must be stored, retrieved,and modi�ed, at reasonable cost.Because of the special di�culties involved in managing large teams and devel-oping and maintaining a number of system versions, multi-person/multi-versionprogramming is fundamentally di�erent from solo programming.1.2 Software Engineering PrinciplesBasic principles play a key role in handling the di�cult problems that arisein multi-person/multi-version programming. The most important principle insoftware engineering|and in problem-solving generally|is separation of con-cerns [9]. A problem that is too complex to be solved directly is decomposedinto subproblems. Subproblems that are still too di�cult to solve directly arefurther decomposed. The decomposition is most useful if the subproblems areindependent or nearly so. Thus, considerable e�ort in software engineering isdevoted to (1) the search for decompositions that maximize the independence ofthe subproblems and (2) careful documentation of the dependencies that remain.In addition to the general principle of separation of concerns, this text isdominated by four broad themes:1. The central role of documentation. Our approach is based on a single set ofdocuments supporting design, implementation, and maintenance. Precisesystem and module speci�cations play a key role: providing the foundationfor the important practice of implementation to speci�cation.2. Systematic veri�cation. We use two complementary methods of veri�ca-tion. Inspections are applied to all work products using the inspectionprocedure now standard in industry. Testing is applied to executable workproducts at both the system and module level. We emphasize automatedtesting and isolation of the module under test.3. E�ective use of mathematics. We have selected a small set of mathematicalconcepts. Notations based on these are used extensively in our speci�ca-tion documents. While we make frequent use of mathematical conceptsand notations, our approach is not highly formal. We use both formal



1.3. SOFTWARE LIFECYCLE 5notations and prose, choosing whichever seems clearer and simpler. Ourinspections are proof-based, in the sense that the reader's job is to presenta convincing logical argument. For example, when inspecting an imple-mentation, the reader must show that it satis�es the speci�cation. Thisproof orientation has a substantial impact on the inspections and on thespeci�cation documents that support them.4. Reducing the cost of maintenance. While most texts deal with mainte-nance as a separate phase, we view maintenance as redevelopment. Main-tenance then consists of partially repeating the development phases, mod-ifying the original work products to reect the �x or enhancement. Ourdesign method is based on information hiding, whereby maintenance costsare reduced by planning for likely changes to the system. Our testing isautomated so that the tests can be repeated after every change to the im-plementation. Finally, we emphasize maintenance in our teaching. Mostassignments focus on reading code and documentation, and on makingchanges to existing code and documentation. Course projects carry achange through from speci�cation to testing, updating and verifying allthe relevant work products along the way.1.3 Software Lifecycle1.3.1 Software tasksThroughout the \life" of a software system there are many phases of developmentand change. Even after a system is delivered, it continually evolves and changes.Therefore, to properly manage a software project, we must model the lifecycleof a software system. Many lifecycle models have been proposed, based on thetasks involved in developing and maintaining a software system. Below we brieydescribe each of these tasks.Requirements analysis. The �rst task in every software project is a carefulanalysis of the problem to be solved. This involves determining the needs of theuser and is typically accomplished through a dialogue between the user and thedeveloper of the system. Clearly this is an important task; no matter how wellyou build a system, if it is not what the user needs then it is not useful. It isalso a complicated task: often the user does not know exactly what he or shewants the system to do and cannot clearly communicate what he or she knows.In particular, when a task is �rst automated, it is di�cult to predict how thenew system will be used. Communication problems arise when the developer andthe user have widely varying backgrounds. Computer systems are developed foran enormous variety of problem domains; software developers cannot be expertsin all these domains. To accurately analyze user needs, however, considerableexpertise is required in the particular domain for which the system is built.



6 Chapter 1 INTRODUCTIONRequirements analysis involves a wide variety of issues, including the pur-pose, bene�ts, and cost of the proposed system. The speci�c requirements areoften grouped into functional and non-functional requirements. The functionalrequirements specify the system inputs and the outputs. The non-functionalrequirements include all other constraints under which the system must be de-livered and operate. These include constraints on cost, delivery date, maintain-ability, performance, and user friendliness.Another aspect of requirements analysis, which is just as important, is de-termining whether it is feasible to build a software system to satisfy the re-quirements. This involves estimating the cost of developing and maintaining thesystem, and determining the bene�ts of the system. These costs and bene�tsmust then be compared to determine if it is worthwhile to implement the system.Requirements speci�cation. Based on the needs identi�ed during require-ments analysis, the required behavior of the delivered system is determined andrecorded. Note the distinction between the requirements analysis and the re-quirements speci�cation tasks. During requirements analysis we determine theuser needs; during requirements speci�cation we precisely de�ne a particularsystem to satisfy those needs.In the literature, many widely varying notations have been proposed for re-quirements speci�cation. These range from informal speci�cations using naturallanguage to highly formal notations. The major advantage of informal, naturallanguage speci�cations is that they can be read and understood without specialtraining. Consequently, they can be used to communicate between the devel-oper and the user. However, such speci�cations are often vague and ambiguous,contain inconsistencies and omissions, and are hard to maintain. Structured no-tations, such as PSL [10], organize the speci�cation into sections but still rely onnatural language to specify the behavior. This makes �nding speci�c informa-tion easier and it allows for some consistency and completeness checking. Thesenotations often lack a precisely de�ned meaning, however, and are therefore hardto reason about. The same holds for diagrammatic notations such as dataowdiagrams and entity-relationship diagrams. Formal notations, such as Z [11] andVDM [12], have a precisely de�ned meaning. Their major disadvantage is theircomplexity, which means that special training is required to understand them.Most programmers do not have the training to use these formal notations. More-over, users rarely have the background to understand these formal notations, andit is therefore hard to determine if a requirements speci�cation correctly reectsthe user's needs.Architectural design. The requirements analysis and speci�cation tasks de-termine and record what has to be built. The architectural design is the �rst taskthat addresses the problem of how to build the system. This is accomplished bydecomposing the system into modules and by determining how these moduleswill interact.This task is motivated by the principle of separation of concerns. Whenfaced with a complex development task, we subdivide it into components, which



1.3. SOFTWARE LIFECYCLE 7we call modules. Modules that are still too complex to implement directly arethen further subdivided into other modules, and so on. In general, separation ofconcerns is e�ective only if the components are relatively independent and if wecan specify and control the unavoidable interactions between the components.For software systems, this translates into modules with minimal and controlledinteraction.Detailed design. For each module, the details of the interface are speci�ed.In many cases, the interface consists of procedures and functions used to accessthe module. For example, a stack module may have calls to push and pop stackelements and calls to return the top element and the depth of the stack. Whensuch a call-based interface is used, the detailed design speci�es the behavior ofthe access routines.In addition, the detailed design speci�es the internal data structures and thealgorithms that will be used to implement the module. For example, the detaileddesign of a stack might specify that the stack will be implemented as an array.The di�erence between architectural design and detailed design can again beexplained in terms of the separation between what we build, and how we build it.During architectural design, we determine what service each module provides.During detailed design, we determine how this service will be provided.Implementation. During implementation, source code is developed for eachmodule, according to the internal data structures and algorithms speci�ed inthe detailed design. Note that the implementation is the only product that isrequired to run the system. Other tasks also produce documents and even sourcecode, such as test code, but these are created primarily for use by the developer.Testing. During testing, we verify that the system performs the required ser-vice. During module testing, each module is tested individually. During integra-tion testing, we verify that groups of modules and subsystems interact correctly.During system testing, we verify that the entire system behaves as speci�ed inthe requirements speci�cation. Finally, during acceptance testing, we verify thatthe system satis�es the user's needs.Maintenance. While it may seem that the developer's job is done after asystem is delivered and installed, in fact it has just begun. Studies show that,on average, more than half of the total cost of a software project is incurredduring maintenance [13]. Here, for simplicity, we refer to maintenance as all thechange activity that occurs after delivery of the system.Since the cost associated with maintenance is so high, it is worthwhile to ex-amine the di�erent types of maintenance that take place. Corrective maintenanceinvolves the removal of errors from the system; the functionality of the systemis changed to match the requirements speci�cation. Adaptive maintenance in-volves modifying the system in reaction to changes in the system environment,such as the hardware or the operating system. Here, the functionality of thesystem changes little or not at all. Perfective maintenance involves changes re-quested by the user or the developer to improve the quality of the system. Thisincludes changes to both the functional and non-functional requirements of the



8 Chapter 1 INTRODUCTIONsystem. Data gathered on existing systems suggest that corrective and adaptivemaintenance each account for less than 20 percent of the total maintenance cost,while perfective maintenance accounts for over 50 percent [14]. This means that,even if we can produce a software system free of errors, a large proportion of theoverall cost will still be devoted to adaptive and perfective maintenance. Con-sequently, reducing the maintenance cost should be an important considerationduring software development.1.3.2 The waterfall modelThe tasks just described appear in one form or another in most large softwareprojects. A lifecycle model attempts to capture how these tasks interrelate andin what order they are performed. A simple model is the waterfall model inwhich each task has a well-de�ned starting and ending point and a task is notstarted until the previous task is completed. For example, under the waterfallmodel, a project starts with requirements analysis. After requirements analysisis completed, the requirements speci�cation task is begun, with no option ofgoing back to requirements analysis. Figure 1.1 illustrates why this model iscalled the waterfall model: one task ows into the next, without the option ofgoing back upstream to a previous task.Clearly the waterfall model is an oversimpli�cation; it does not allow feedbackfrom a task to previous tasks. For example, during requirements speci�cation,errors will be found in the requirements analysis necessitating further require-ments analysis. Even if we were able to perform all the tasks free of errors,feedback is still required because the user requirements and the environment inwhich the system operates frequently change both during and after development.A second problem with the waterfall model is that a phase is not starteduntil a previous phase is completed. This has the disadvantage that it takes along time before any deliverable products can be shown to the user. If the userthen �nds that the system does not satisfy his or her needs, much of the e�ortinvolved in producing the system will be wasted.To address the issue of feedback, we allow iterative interaction between thevarious tasks. Figure 1.2 illustrates this iterative waterfall model. Note thatthe feedback may involve several tasks. For example, it is common that duringdevelopment the requirements of the system change. This results in a change tothe requirements, and the change then propagates forward through all the tasksin the lifecycle.1.3.3 Other modelsThe iterative waterfall model addresses the problem of feedback. We now brieydescribe two other models that support feedback and also reduce the time be-tween the start of a project and the delivery of a system to the user.
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Figure 1.1 Waterfall model of the software lifecycleThe motivation behind the evolutionary model is that it is impossible tobuild a large software system right the �rst time. As Brooks [15, page 116]points out, with a software system, \plan to throw one away; you will, anyhow."This suggests that the �rst version of a system should be a trial system whosepurpose is to help understand the requirements of the system. Such a preliminaryversion is called a prototype and often does not include the full functionalityof the eventual system. After the prototype is used to better understand therequirements, it is discarded and the real system is built.Building a system version primarily for learning purposes is known as pro-totyping. The evolutionary model takes this approach further and models thesoftware lifecycle as a continual evolution from one version of the system tothe next. After the initial version of the system is built, each version evolvesfrom the previous one by changes resulting from a better understanding of therequirements and changes to the environment in which the system operates.
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Figure 1.2 Iterative waterfall model of the software lifecycleNote that the evolutionary model does not specify how each version of thesystem is constructed; the waterfall model can be used for that. That is, foreach new version, we �rst determine the changes to the requirements and thenincorporate the changes through the various tasks in the waterfall model. In thisway, maintenance is modeled as redevelopment, since we perform the same tasksfor maintenance as we performed for the development of the system.The spiral model of the software lifecycle can be viewed as a special caseof the evolutionary model. The spiral model is guided by the risk associatedwith each change to the current system. For example, a small well-understoodchange represents a small risk, whereas a substantial and poorly understoodchange represents a large risk.As its name suggests, the spiral model is cyclic. During each cycle of thespiral, the following four steps are performed:1. The objectives for the change from the current version are determined, and



1.3. SOFTWARE LIFECYCLE 11alternatives for implementing the change are identi�ed.2. The alternatives are evaluated, and potential risks associated with eachalternative are identi�ed.3. The best alternative is implemented, and the results of the change areveri�ed.4. The results from the current cycle are reviewed, and a plan is constructedfor the next cycle.The spiral model addresses both development and maintenance of a softwaresystem. As with the evolutionary model, maintenance is modeled as redevelop-ment.1.3.4 Our modelSince, in reality, the progression from one task or one version to the next willvary from one project to the next, we do not favor any particular model of thesoftware lifecycle. Instead, we emphasize the deliverables of a software project.In particular, we discuss seven work products that are created for each softwaresystem, but we do not concern ourselves overly with the order in which these workproducts are produced. However, we present the deliverables in a linear fashion,following the order of the waterfall model. This is the best order for explainingand understanding the work products, even though during development the workproducts are frequently created in a di�erent order.In the remainder of this text, we do not treat the requirements analysis taskin detail. Although it is an important task, it is also very complex and varieswidely from one project to the next. Moreover, we believe that it is di�cult toappreciate the key requirements analysis issues until you have seen and used atleast one requirements speci�cation.We present no work products associated only with maintenance, because weview maintenance as redevelopment, as in the evolutionary and spiral models.In our approach, maintenance involves updating the seven work products. Inaddition, maintenance is a major motivator for much of what we do duringdevelopment:� The work products serve as vital documentation during maintenance. It istherefore essential that the work products are updated during maintenance;otherwise they quickly become outdated and unreliable.� During requirements speci�cation, we attempt to anticipate likely changesto the system. These likely changes are then used during the architecturaldesign to ensure that it will be easy to incorporate them later on.� During testing, we emphasize cheap repeatability of test cases throughautomation so that it is easy to run all our test cases after every changeto the system.



12 Chapter 1 INTRODUCTION� Throughout the text, we emphasize maintenance in the exercises, whichfor a large part involves changing parts of our model system. This is partlythe motivation for using a model system, without which it is impossibleto obtain an appreciation of the considerable e�ort involved with mainte-nance.1.4 The Big PictureSoftware engineering is a broad �eld. On the one hand, it must address technicalissues such as methods and tools to develop software systems. On the other hand,it is concerned with managerial issues relating to delivering software systems ontime and within budget, including human and organizational factors. Obviously,it is impossible to cover all these topics in depth in a single text. However, itis important to realize where the material that we cover in this text �ts in the\big picture."1.4.1 Software project managementMany considerations are necessary for managing a software project. Estimatingand scheduling are critical for achieving the basic control necessary to ensurethat a software system is delivered on time and within budget. Con�gurationmanagement is essential for controlling the many work products and versions ofa system that exist in a typical software project.During project estimation, we attempt to determine the resources requiredfor completing a project and hence the cost associated with the project. Thisinvolves estimating both the human resources and the system resources, suchas equipment and software tools. Since human resources typically dominate thecost of a software project, they are the most important consideration duringestimation. While it is possible to make accurate estimates for projects that aresimilar to previous projects, it is very hard to do so for a very di�erent system oreven for a similar system in a new application domain. Estimation models suchas COCOMO [13] may assist with software project estimation, but even thesemodels must be calibrated to the individual organization and type of project athand.After an estimate has been made, the manager must determine a schedulefor completing the project. This involves determining a start and end date, andresource allocation for each task. Although the software lifecycle model providesan initial decomposition of the tasks to be performed, a �ner decomposition isrequired to develop an accurate schedule. Notations such as PERT charts can beused to record the various task interdependencies. Usually, many tasks cannotbe started until other tasks are completed. For example, a module cannot beimplemented until its interface is determined. Bar graphs or Gantt charts areuseful for recording the schedule. Once the project gets under way, progress



1.4. THE BIG PICTURE 13must be monitored and compared with the schedule. If the project falls behindschedule, remedial action may be required. This may involve allocating addi-tional resources to the project, increasing the productivity of existing sta� insome way, or rescheduling the project.Con�guration management addresses the multi-version aspect of a softwareengineering project. In a typical project, the system is maintained in many dif-ferent �les and directories, and complex relationships exist between the �les. Theproblem is further complicated by frequent changes. The consequences of poorcon�guration management include: �nding the same error twice because it wasnot �xed in all versions, inconsistency between documentation and code, and lossof documentation or code. Such problems are unavoidable unless considerableattention is paid to con�guration management.In a software system, a con�guration includes all the work products associatedwith the system. This includes not only the system that is delivered to the user,but also the documentation and support code maintained by the developer. Acon�guration may also include di�erent versions of executable �les for di�erenthardware and operating systems.To appreciate the problems associated with con�guration management, it isimportant to realize the enormous number of objects that are part of a typicalsoftware project. Even a small system may contain over a hundred �les. Forrealistically sized systems, this number will increase to thousands or tens ofthousands. Problems associated with con�guration management are thereforesimilar to the ones faced by a modern library in storing and tracking books. Suchlibraries often contain more than a million volumes. Without careful inventory,many of the books will inevitably end up lost. Even the storage of books requiresstrict organization and careful attention; if a book is placed on the wrong shelf,it may be lost for all intents and purposes.The three major tasks in con�guration management are (1) the storage ofobjects, (2) the building of systems, and (3) the veri�cation of the con�guration.The objects in a con�guration must be stored in such a way that they can easilybe accessed and changed. A number of issues arise. Several people may attemptto access or update an object at the same time. Sometimes not all objects arestored in the same location or even on the same system. Multiple versions ofthe same object may exist. The building of systems involves providing supportfor the construction of products from the objects in a con�guration. A typicalexample is the construction of an executable �le from several source �les. Finally,the veri�cation of a con�guration involves ensuring that the current con�gurationis consistent and conforms to the con�guration plan.1.4.2 Software development methodsA wide variety of methods are in use for developing software products. We brieyreview four of these methods: structured analysis and design, object-orientedprogramming, the Cleanroom approach, and formal methods.



14 Chapter 1 INTRODUCTIONStructured analysis and structured design (SA/SD) is a family of designmethods. These methods rely heavily upon graphical representations, such asdataow diagrams and entity-relationship diagrams, and are widely used in in-dustry. Object-oriented analysis and design is an extension of SA/SD.Object-oriented programming is based on encapsulation, inheritance, andpolymorphism, as supplied by languages such as SmallTalk and C++. Encapsu-lation insulates parts of the system from changes in other parts. For example,in an object-oriented language, the services of a stack would be encapsulatedin a stack object that can be accessed through a standard interface, but thathides the internal data structures used to implement the stack. Consequently,the implementation data structure can be easily changed from, for example, anarray to a linked list, without a�ecting other parts of the system. Inheritance isa mechanism by which the services of one object can be extended or changed,without having to reimplement the entire object. Polymorphism allows us toprovide the same service for objects of di�erent types. For example, instead ofhaving to implement a stack of integers and a stack of strings separately, we candevelop a single implementation that can store integers or strings.The Cleanroom method is based upon an evolutionary model of the soft-ware lifecycle. In the Cleanroom approach, software development consists of asequence of executable product increments. These increments accumulate overthe development lifecycle and eventually result in the �nal product.Three key components distinguish the Cleanroom approach from other ap-proaches to incremental development.1. The speci�cations describe the required behavior as functions that arestructured so that they can be easily composed.2. Program units are designed and implemented to satisfy the speci�cationfunctions. However, these program units are never executed by the devel-opers, who rely solely on logical argument to convince themselves that thesoftware correctly implements the speci�cation.3. After a system increment is completed, it is certi�ed through independent,statistically based testing, as is often done in other areas of engineering andmanufacturing. It is statistically based because the test cases are chosenrandomly from a frequency distribution intended to closely resemble theactual usage to come.The Cleanroom approach is based on error prevention rather than error de-tection, and empirical studies [16] show encouraging results. When comparedwith more traditional approaches to software development, fewer defects arefound in software produced with the Cleanroom approach. What is interestingis that during these studies both quality and productivity improved.Formal methods provide speci�cation notations with precisely de�ned math-ematical meanings and proof methods. It is then possible to manipulate the



1.4. THE BIG PICTURE 15speci�cation mechanically to establish, for example, consistency and complete-ness. In principle, it is possible to formally verify that a system implementationsatis�es its speci�cation.Examples of formal methods include model-based speci�cation languagessuch as Z [11] and VDM [12]. These languages specify software behavior interms of a model of the state, using mathematical objects such as sets and se-quences. The algebraic [17] and trace [18] methods de�ne the behavior directlyin terms of sequences of calls on the software.Since formal speci�cations have a precisely de�ned meaning, they can sup-port rigorous reasoning. The trend in software engineering research is towarddocuments that are as formal as possible. Sophisticated mathematics is neededto achieve this formality; even simple systems often have complex speci�ca-tions. Industrial software developers typically �nd these speci�cations unread-able. Moreover, no �gures are available for the cost of reading, writing, verify-ing, and maintaining formal speci�cations for industrial systems. The result is acrippling stando�; formal methods researchers insist on complete formality, andpracticing programmers continue to rely on the code alone.E�ective documentation depends on a more balanced view, based on twoideas. First, formality is not a suitable engineering goal. While it is a power-ful means for achieving engineering goals, such as reliability, it is dangerouslyinappropriate as an end in itself. There is no inherent value to the customerin formality, only in the other characteristics that may, or may not, be bestachieved by formal methods. Second, the principal purpose for documentationis communication between people. Therefore, formality should be used when itfacilitates this communication, and avoided otherwise.Consider, for example, the sequence of integers s = hs[0]; s[1]; : : : ; s[n � 1]iand the following two assertions.1. s contains no duplicates2. (8i; j 2 [0; n� 1])(i 6= j ! s[i] 6= s[j])Which is better? The answer depends on the audience. The �rst assertion isshorter and would be preferred by many programmers. The second one is moreprecise and might appeal to readers with logic training.1.4.3 Software quality assuranceSoftware has a reputation for poor quality; a reputation that is, to a large extent,justi�ed. Errors are common in software systems, and often the systems are hardto use. The software developers themselves su�er from this poor quality. Thesystems they produce are hard to understand and maintain, translating into highmaintenance costs. It is therefore not surprising that software quality assurance,the attempt to ensure that a system meets some quality standard, is an importantconsideration in every software project.



16 Chapter 1 INTRODUCTION� Correctness: extent to which system performs its speci�ed service� Reliability: likelihood of failure during actual use� Robustness: how well a system behaves under unexpected circumstances� Maintainability� Readability: ease with which software can be understood� Modi�ability: ease with which software can be modi�ed� Veri�ability: ease with which software can be veri�ed� User friendliness: ease with which the system can be used� Performance: time and space e�ciency of the software� Portability: ease with which software can be moved to other platformsFigure 1.3 Software qualitiesThe list of qualities that must be considered for a software system is large.Figure 1.3 shows a partial list. The qualities that are most important will varyfrom one project to another. Below we briey expand on correctness, reliability,and robustness; three qualities that are important in any software project.Correctness refers to the extent to which the system behavior correspondsto the requirements speci�cation. While it is a fact of life that no non-trivialsoftware system is completely correct, it is useful to establish correctness as animportant goal. Reliability focuses on the actual use of the system over time.One approach for expressing reliability ismean-time between failures : the averagetime between two successive failures of the system. A system may have errorsbut still be highly reliable if the errors appear only on inputs that never occur inactual use. Robustness addresses how well a system behaves under unexpectedcircumstances, such as incorrect user input and hardware failures. For example,many text editors allow the user to recover much of an edit session after thesystem goes down unexpectedly, even if the user did not explicitly save anyinformation while editing.Determining whether a system meets the user's needs involves two tasks: ver-i�cation and validation. Veri�cation determines whether a system meets its re-quirements speci�cation. Validation determines whether the requirements spec-i�cation adequately captures the user's needs. Since a lot more is known aboutveri�cation than about validation, we focus on veri�cation. Four approaches toveri�cation are testing, walkthroughs, inspections, and formal veri�cation.Testing is the execution of a program to reveal errors in its behavior. Wealready discussed the various levels of testing that must be performed: moduletesting, integration testing, system testing, and acceptance testing. Note thatacceptance testing is a form of validation, and the other three are a form ofveri�cation.Both walkthroughs and inspections are veri�cation methods that are basedon peer review. During a walkthrough, a person walks through a work productbased on certain scenarios, with the intention of �nding errors in the work prod-



1.4. THE BIG PICTURE 17uct. For example, a walkthrough of a piece of code may involve selecting sometest cases and \hand-executing" the code for those test cases. Inspections aremore structured and focus on particular inspection criteria, such as ensuring thatevery loop in a program terminates. By focusing on particular criteria, there isa better chance of detecting violations of these criteria.Formal veri�cation involves formally proving that a system meets its spec-i�cation. While testing, walkthroughs, and inspections are widely applied inindustry, formal veri�cation has had little industrial application. However, be-cause the idea is so appealing, formal veri�cation is, and will remain, an activeresearch topic.1.4.4 Software measurementMeasurement plays a critical role in software estimation and in determining andimproving the quality of software. To verify and improve on the estimates wemake, we must compare our estimates to �gures from actual projects. Similarly,if we want to improve the quality of our software, we can use measurement toassess both the current state of a�airs and the impact of changes.The �rst step in measurement is determining precisely what to measure. Forsoftware systems, one important aspect is the work products, such as speci�-cations, source code, and object code. Less obviously, we must also measureproperties of the process by which the software is created, such as how manypeople work on a project and for how long.We can roughly subdivide the properties suitable for measurement into threecategories. The �rst is a notion of size, which measures properties of workproducts. Here the notion of size is quite variable, ranging from somethingas simple as the number of lines in a �le to notions of complexity of a pieceof source code. The second is a notion of e�ort, which measures propertiesof human involvement. Typically this measurement is expressed as a numberof person-months or person-years expended on a project. The third categoryinvolves measurements of the number of defects in a work product, which relatesto the quality of the product.To improve the products or the processes by which the products are created,an organization must go through a continual cycle guided by measurement. Dur-ing the �rst phase of the cycle, information is gathered by measuring propertiesof the current products and processes. This information is then analyzed, andpotential areas of improvement are identi�ed. Finally, the products and proc-esses are changed to implement the improvements. During the next cycle, newmeasurements will indicate whether or not the improvements have had theirdesired e�ect.A metric is a quanti�able measurement that is intended to capture relevantinformation. Many metrics have been proposed for software systems. There arethe obvious ones such as the number of source lines in a system and the number ofperson-years expended on a project. More elaborate ones include the cyclomatic



18 Chapter 1 INTRODUCTIONcomplexity [19] and the Halstead metric [20], which measure the complexityof a piece of code based on its syntactic structure. There are also metrics forother tasks and products in the software lifecycle. For example, metrics such asstatement, branch, and path coverage measure how many statements, branches,and paths are executed in a program by a set of test cases. This is intended tomeasure how well the test cases exercise the program.The two most important considerations for a metric are (1) how well it cap-tures the quality of interest and (2) how expensive it is to calculate. For manyproposed metrics, the �rst consideration is a serious concern. For example, it isnot clear that there is a signi�cant relationship between the statement coverageachieved by a test suite and the quality of the test suite.1.4.5 Software toolsIn this section, we discuss the tools used by software engineers for constructingsoftware systems. There is a large list of standard tools that are essential andused in every project. These tools include editors, compilers, debuggers, �lesystems, and standard libraries. The list of other tools is virtually endless. Webriey review the tools that are now in common use in industry.Con�guration management tools are essential for storing the large number ofobjects involved and for building systems from those objects. Luckily, this areaof software management has great potential for automation since it is largelya bookkeeping task. Con�guration management tools allow developers to buildsystems from the objects in the con�guration. For example, based on dependency�les and time stamps, the UNIX make facility can determine which object �lesmust be recompiled and linked to generate an executable program. There are alsotools for version control, which, in their simplest form, track multiple versionsof a �le. Since storing all the versions separately is typically una�ordable, thesetools maintain the versions by storing di�erences between successive versions.Examples of simple version control tools are the UNIX RCS and SCCS utilities.Common testing tools include coverage measurement tools, �le comparators,and keystroke capture and playback tools. Coverage tools measure which partsof the source code were executed by a set of test cases. For example, the UNIXtool tcov measures which statements in a source �le were executed. More sophis-ticated coverage tools measure characteristics such as branch and path coverage.Since many systems produce �les as output, a number of testing tools existfor comparing �les. The expected output for a test case can be stored in one �leand automatically compared with the actual output from the test case, which issaved in another �le. The UNIX utility di� does a line by line comparison oftwo �les. More sophisticated comparison tools are able to ignore certain aspectsof the output, such as di�erences in the number of whitespaces.Although it is hard to completely automate the testing of interactive ap-plications, a number of tools exist to facilitate this task. A keystroke captureand playback tool is like a tape recorder for the characters entered from the



1.5. BIBLIOGRAPHIC NOTES 19keyboard. During the capture phase, the characters typed by the tester arerecorded. During testing, the keystrokes entered by the tester are played backin the same sequence and at the same rate as the original sequence. Keystrokecapture and playback tools are often used in conjunction with tools to comparescreen images. During the recording session, the tester may save the currentcontent of the screen. During the playback phase, the new screen contents canbe compared with the saved one.The goal of Computer-Aided Software Engineering (CASE) is the automationof software engineering activities. The �rst generation of CASE tools consistedprimarily of tools to support structured analysis and structured design. Theseinclude graphical editors for dataow diagrams and entity-relationship diagrams,as well as estimating and scheduling tools. The current trend in CASE tools isto move towards software development environments: integrated collections oftools. Such environments include tools to support the planning, development,and maintenance of a software project.1.5 Bibliographic NotesPressman [21] provides a good overview of industrial software engineering issuesand practices. Ghezzi et al. [22] survey most of the known software engineeringmethods and provide an excellent bibliography.Much has been written on the topics excluded from this text. DeMarco[23] and Yourdon and Constantine [24] describe structured analysis and design;Ward and Mellor [25] show how to adapt these methods to real-time systems.Boehm [26, 27] discusses prototyping and its impact on the software developmentlifecycle. The Cleanroom approach is explained in detail by Dyer [4]. Jones [12]and Spivey [11] show how to apply formal methods to software engineering usingVDM and Z, respectively. A great deal has been written about object-orientedprogramming, in SmallTalk [28], Ada [29], Ei�el [30], and C++ [31].Techniques for project scheduling and management, including metrics, arepresented by Humphrey [32] and Grady [33]. Babich [34] focuses on con�gurationmanagement.





Chapter 2Software EngineeringFundamentalsIt is easy for me to single out the one factor that led to our relative success: wewere all engineers and had been trained to organize our thinking along engineer-ing lines. We had a need to rationalize the job; to de�ne a system of documen-tation so that others would know what was being done; to de�ne interfaces andpolice them carefully; ... [H. D. Benington]2.1 IntroductionThis chapter presents the Software Engineering concepts that will be used in thechapters to come. Section 2.2 describes the central role of documentation andpresents the principles of e�ective documentation. Section 2.3 de�nes the sevenwork products|code and documentation|that are the output of our softwaredevelopment phases. A key role is played by speci�cations: descriptions of therequired behavior of a system or component. In Section 2.4, we cover veri�-cation: demonstrating the correctness of a work product. Veri�cation throughtesting and inspection is discussed. Finally, Section 2.5 discusses software costestimation.2.2 Documentation Principles2.2.1 Current practiceIn the software industry today, many programmers view documentation as anecessary evil. They believe it has little value and produce it reluctantly andwith as little e�ort as possible. Only the production source code is taken se-riously. Often there is little or no documentation written, especially regarding21



22 Chapter 2 SOFTWARE ENGINEERING FUNDAMENTALSsystem internals. In other cases, there are shelves full of documentation, but itis so hard to use that it remains unused. Frequently di�erent sets of documen-tation are produced for each development phase: one set for analysis, anotherfor implementation, and yet another for maintenance. The relationship betweenthe sets of documentation is uncontrolled and poorly understood.This approach causes numerous di�culties. The documentation is incompleteand inaccurate, a serious problem. A deeper problem is that the documentationis unplanned and undisciplined. Inappropriate assumptions are made aboutthe knowledge and goals of the reader. It is hard to �nd speci�c facts. Theterminology is confusing and inconsistent, and key concepts are unde�ned orvaguely de�ned. Multiple terms are used for a single concept; distinct conceptsare described by the same term. Due to poor organization, the documents arehard to maintain and, therefore, are not maintained. Producing independentsets of documentation for each development phase is expensive and ine�ective.Signi�cant redundancy is inevitable. Because the documents are used only once,they contain many errors. Only repeated use will reveal these errors and providethe motivation to remove them.2.2.2 Planned documentationCareful planning is required to avoid the problems just described. Before the �rstdocument is written, a document structure must be de�ned, specifying the rolesof all the documents and the relationships between them. This structure formsan information taxonomy: a set of classi�cation rules providing, for each relevantfact, the document and section in which that fact will be stored. Such a structuremakes documents easier to create, use, and maintain. The document structuremust be explicitly de�ned and clearly understood. A good document structurewill encourage documentation designed for reference use, so that speci�c factsare easy to �nd; ease of review, so that errors can be found and corrected; andease of change, so that the documents can be kept consistent with the code.For each document, criteria must be developed specifying the scope, purpose,and other required characteristics of the document itself. These criteria guidedocument writers by establishing clear goals, help reviewers determine whatconstitutes an error, and tell readers what information to expect in a givendocument. Document criteria must provide at least the following information:� Audience: the intended readers. Successful technical communication de-pends on knowing the characteristics of your audience.� Prerequisites : knowledge the reader is assumed to have before reading thedocument. The prerequisites determine which concepts must be de�nedand which should not be de�ned.� Purpose: knowledge the reader can acquire from the document.



2.2. DOCUMENTATION PRINCIPLES 23Speci�cation documents play a central role in disciplined software develop-ment. These documents focus on the observable behavior of a system or compo-nent. Among the readers of a speci�cation, four roles naturally arise. Considerspeci�cation S and implementation I .� The designer decides on I 's observable behavior and records it in S.� The developer creates an implementation I to satisfy S.� The veri�er determines whether I does in fact satisfy S.� The user reads S to learn how to use I .While most documentation is created during system development, it is criticalto keep the maintainer in mind. Typically, the maintainer is not a member of thedevelopment team and is not present at project meetings. He or she thereforedepends heavily on the documentation. Further, because it is so expensive,maintenance is a prime target for cost savings.2.2.3 Triple-purpose documentsWe have described the problems associated with producing di�erent sets of doc-umentation for each development phase. To avoid these problems, we use triple-purpose documents: a single set of documents for design, implementation, andmaintenance.Initially, these documents are the focus of the design e�ort. They recorddesign decisions independently of the implementation and serve as the basis fordesign reviews, revealing many errors before implementation. During implemen-tation the same documents support parallel development, telling users what theycan expect, telling implementors what must be done, and serving as the basis forcorrectness during testing. During maintenance the documents are used again.They support analysis of change requests, provide a structure in which to recordchanges, and aid in training new sta�.With the same documents used in design, implementation, and maintenance,less documentation is required. Further, this approach supplies the repeated useneeded to discover errors and to motivate their removal.2.2.4 SummaryIndustrial documentation su�ers from problems so serious that programmers relyalmost exclusively on the code. To remedy these problems, the documents mustbe designed as carefully as the code they support. The same set of documentsmust be used for design, implementation, and maintenance.Our design methodology is based on the central role of documentation. Itis, in some ways, more important than the code. Discard the code and keepthe documents, and you can recreate the code quickly and capably. Discard the



24 Chapter 2 SOFTWARE ENGINEERING FUNDAMENTALSTable 2.1 stack interface syntaxRoutine name Inputs Outputs Exceptionss inits push integer fulls pop emptyg top integer emptyg depth integerdocuments and keep the code, and the resulting system will be hard to controland expensive to maintain.2.3 Work ProductsOur design method is based on seven work products : a generic term for deliver-ables, including documentation, code, and data �les. We begin by de�ning theessential terms, and then describe the work products.2.3.1 TerminologyWe de�ne a module as a programming work assignment and a module interface(hereafter just interface) as the set of assumptions that programmers using themodule are permitted to make about its behavior. We view a module as ablack box, accessible only through a �xed set of access routines. We dividethe access routines into three groups: (1) set routines that modify the internalmodule state, (2) get routines that return values computed from the modulestate, without modifying it, and (3) set-get routines that do both. Intuitively,set routines correspond to pure procedures, get routines to pure functions, andset-get routines to functions with side e�ects. In access routine names, we usethe pre�x s to indicate set access routines, g to indicate get routines, and sgto indicate set-get routines.Under certain circumstances, an access routine call may be illegal: issuingthe call will generate an exception. The module implementation is required todetect the occurrence of an illegal call and to signal the module user that theassociated exception has occurred. These ideas are illustrated on a stack module(see Table 2.1), providing a pushdown integer stack with a maximum of MAXSIZelements. The module behaves as follows: s init initializes the stack, with noelements. s push(i) pushes i onto the stack, signaling the exception full ifthe stack contains MAXSIZ elements. g top returns the value of the top stackelement and s pop discards this element; both calls signal empty if the stack hasno elements. g depth returns the number of elements in the stack.



2.3. WORK PRODUCTS 252.3.2 Work product de�nitionsThe seven work products are described below in the order in which they wouldbe developed under ideal circumstances. Here the descriptions are brief; eachwork product is described and illustrated in detail in Part II.1. Requirements Speci�cation: describes the required behavior of an appli-cation program in terms of its observable inputs and outputs. Both nor-mal and abnormal behavior are speci�ed. To reduce maintenance costs,expected changes in the system's required behavior and environment arerecorded. Since most systems are too large to be implemented by a singleperson, the development task is decomposed into modules.2. Module Guide: describes and motivates the module decomposition. Foreach module, the Module Guide provides two items: (1) a sketch of theservice o�ered by the module and (2) a description of the expected changesthat might impact the module.3. Module Interface Speci�cation: precisely describes the services that eachmodule provides. Interface speci�cations are black box; that is, no mentionis made of internal data structures and algorithms.4. Module Internal Design: speci�es the internal data structures, or modulestate, in the syntax of the implementation programming language. Thee�ect of each access routine is also speci�ed, in terms of the module state.5. Module Implementation: the production source code and the build proce-dures.6. Test Plan: describes the strategy used for selecting test cases, for executingthe tests, and for checking the output for correctness.7. Test Implementation: consists of the source code, data �les, and manualprocedures required for testing. We make heavy use of sca�olding so thatmodules can be tested in isolation. Where practical, tests are automatedso that they can be repeated cheaply and accurately.The work products are summarized in Figure 2.1. In terms of the lifecycle de-scribed in Section 1.3, the Module Guide is an architectural design work productand the Module Interface Speci�cation and Module Internal Design are detaileddesign work products.A given system will consist of multiple instances of each of these work prod-ucts. Typically one or more Requirements Speci�cations and one Module Guideare developed per system, and one Module Interface Speci�cation, Module In-ternal Design, Module Implementation, Test Plan, and Test Implementationare required for each module. A Test Plan and Test Implementation are alsorequired for system testing. For example, the SHAM System has two Require-ments Speci�cations, one Module Guide, nine instances of work products 3{5,



26 Chapter 2 SOFTWARE ENGINEERING FUNDAMENTALS1. Requirements Speci�cationSpeci�cation of the required system behavior.2. Module GuideDescription of and motivation for the module decomposition.3. Module Interface Speci�cationSpeci�cation of the required behavior of each module.4. Module Internal DesignSpeci�cation of the module internal data structures.5. Module ImplementationProduction source code.6. Test PlanStrategy for selecting and executing tests.7. Test ImplementationSource code, data �les, and manual procedures required for testing.Figure 2.1 Work product summaryAssumptions Exceptions Normal caseAbnormalz }| { Normalz }| {Uncontrolledbehavior| {z } Controlledbehavior| {z }Figure 2.2 The speci�cation trichotomyand ten instances of work products 6 and 7. Note that only one of the sevenwork products|the Module Implementation|is delivered code; the others are,in fact, overhead. While so much overhead may seem disturbing, it is needed tocontrol software development and maintenance.2.3.3 The speci�cation trichotomyIn speci�cation work products, it is important to distinguish between normal andabnormal situations. A key step is establishing the speci�cation trichotomy, adivision of the possible situations into (1) implementor's assumptions, (2) excep-tions, and (3) normal cases. The assumptions describe the abnormal situationsthat the implementation need not handle and the exceptions describe the ab-normal situations that must be detected and signaled; the remaining cases areconsidered normal. The speci�cation trichotomy is illustrated graphically inFigure 2.2.When developing speci�cations, we begin by deciding which situations willbe normal and which will be abnormal. There are two main reasons to consider



2.4. VERIFICATION 27a user request abnormal:1. Inherently illegal requests. The request is inherently illegal or unde�ned.For example, a call to g top when the stack is empty is an inherently illegalrequest.2. Resource limitations. The request cannot be satis�ed due to resource limi-tations. For example, a call to s push is illegal if there is no more memoryavailable.Once the normal/abnormal division has been established, we must subdividethe abnormal cases into implementor's assumptions and exceptions. Assump-tions arise for two main reasons:1. Undetectable violations. The request is illegal, but not in a way that theimplementor can detect. For example, when a pointer is passed as a func-tion parameter, there may be no way to determine whether the pointervalue is a legal address.2. Cost considerations. The illegality is detectable, but the cost of detectionis too high. For example, checks for illegal array subscripts are usuallyomitted from production code for performance reasons.In SHAM, we take a conservative approach, preferring exceptions to implemen-tor's assumptions when exception detection is feasible.It is important to realize that establishing the speci�cation trichotomy in-volves making inuential decisions. For example, deciding that a given caseshould be considered normal may make the software more useful but may alsosigni�cantly increase development cost or degrade performance.2.4 Veri�cationVeri�cation is the task of showing that a work product is free from errors. Forexample, we may verify that a system meets its Requirements Speci�cation orthat a Module Implementation obeys an indenting convention. The work productcriteria de�ne the required characteristics of each work product and thus deter-mine what constitutes an error. Systematic veri�cation is critical in softwareengineering, to reveal errors and to enforce adherence to standards. Withoutveri�cation, errors will be numerous, and standards will be ignored.There are substantial bene�ts to discovering errors as early as possible. Gen-erally speaking, the later an error is discovered the more the cost to �x it.Suppose, for example, that the Requirements Speci�cation has an error. If it isrevealed while verifying the speci�cation, only the speci�cation must be changed.However, if the error is discovered during system testing, design and code changesare frequently needed as well.



28 Chapter 2 SOFTWARE ENGINEERING FUNDAMENTALSIt is useful to divide errors into two classes. A failure is the occurrence ofincorrect system behavior, that is, an incorrect output. A fault is an error in thework product itself. There are two complementary approaches to veri�cation,distinguished by the errors revealed and the techniques applied. Inspection isdesigned to �nd faults through human review. Testing is designed to �nd failuresusing program execution.2.4.1 InspectionSoftware inspections are based on peer review by small teams and have beenwidely used in industry with impressive success. For example, over 2.5 millionlines of code have been inspected at Bell-Northern Research (BNR), a Canadiandeveloper of telephone switching equipment [35]. On average, one fault wasfound per person-hour invested. While this may seem expensive, inspection wastwo to four times as e�ective as testing. Further, it cost BNR an average of 4.5person-days to �x a fault discovered after installation in the �eld. Clearly, earlyfault discovery pays o�.The inspection process is structured: roles are assigned to each team memberand speci�c steps are followed. The moderator plays the most important role,controlling all meetings and ensuring that the conduct is professional and thecriticism constructive. The reader paraphrases the work product line by line,attempting to convince the inspection team that it is fault-free. The recorderproduces a written record of the faults found. The remaining team members arethe inspectors ; they listen, seeking faults in the work product or in the reader'sparaphrasing. Inspection teams are small, typically consisting of three to �vepeople. Usually the reader is not the author of the work product; the authortends to paraphrase too quickly. Also, having a non-author as reader helpsensure that the work product will be comprehensible.The inspection process consists of �ve steps:1. Overview meeting. This brief meeting provides an overview of the workproduct and its context. Copies of the work product are distributed to allteam members.2. Preparation. Each team member studies the work product.3. Inspection meeting. The reader paraphrases the work product, line byline. Questions from the inspectors are pursued only until a fault has beenidenti�ed. In this meeting, there is no discussion of who is to blame for thefault or of how the fault will be removed. Normally inspection meetings donot exceed two hours in length, due to the intense concentration required.4. Rework. The faults discovered in the inspection meeting are removed bythe author.



2.4. VERIFICATION 295. Follow-up. The moderator ensures that the rework has been completed. Ifmany changes were made, the moderator normally requires reinspection ofthe entire work product.Our inspections are proof-based in the following sense: For each work prod-uct, we establish a speci�c set of criteria. In an inspection meeting, the readeris obliged to show that the work product satis�es the criteria. In many casesthis obligation is best accomplished with a \proof"|a logical argument thatthe work product has the required characteristics. For example, when inspect-ing a Requirements Speci�cation, the reader must show that the speci�cation iscomplete; every input has been considered and dealt with. Typically, the proofis presented informally, in the style normally used for communication betweenprogrammers. The proof orientation of our inspections has a substantial impacton work product design; the documents are structured to make the inspection-meeting proofs as simple as possible.In summary, inspection is a systematic approach for fault detection. Theprimary bene�ts are early fault discovery|because speci�cations as well as codecan be inspected|and feedback to developers on error-prone habits. Inspectionis also an e�ective educational technique; new sta� members can learn program-ming techniques and documentation standards by attending inspection meetings.2.4.2 TestingAccording to Dijkstra \Program testing can be used to show the presence ofbugs, but never their absence" [36]. As a consequence, testing alone cannotprovide much con�dence. Testing is, however, quite valuable as an independentcheck on code that has been carefully designed and inspected.For software testing, we adapt two important concepts from hardware testing.Controllability refers to the ease with which an arbitrary input may be appliedto a system or module. Observability refers to the ease with which the outputmay be observed.Test sca�olding is code whose purpose is testing the production system or itscomponents. Consider a module M . A driver is test code written to call accessroutines provided by M . A stub is test code that serves as a substitute for anaccess routine called by M .There are three principles underlying e�ective and a�ordable testing.1. Building and maintaining test suites. Often tests are developed during orafter implementation and are discarded after acceptance. It is importantto plan testing early in development, so that testability can be used toinuence system design, and to deliver and maintain tests along with theproduction code. A system should not be considered complete until bothproduction code and test code are complete. Without testing in place, thesystem may appear �nished, but it is a maintenance problem in disguise.



30 Chapter 2 SOFTWARE ENGINEERING FUNDAMENTALS2. Isolating the module under test. It is typically di�cult to thoroughly test amodule M while it is installed in a production system. M 's access routinesare often not directly accessible. If M is a general-purpose module, someof its access routines may not be called at all in a particular productionsystem. Errors in other modules may appear to be errors in M. Conversely,errors in M may be masked by errors in other modules. In short, when Mis running in its production environment, controllability and observabil-ity are often poor. Using test sca�olding, M may be tested in isolationfrom the production environment. In practice, modules are best testedwith a mixture of sca�olding and production code; the critical tradeo� isbetween the bene�ts realized through isolation and the cost of developingand maintaining the sca�olding.3. Applying design for testability. While stubs and drivers can improve con-trollability and observability, the module decomposition and the moduleinterfaces also have a signi�cant e�ect on testability. In VLSI design, in-terchip communication is extremely expensive, and so it is minimized. Insoftware, there is no such physical limitation. For example, there is no timeor space cost in communication through global variables. Yet, experiencehas shown that uncontrolled module interactions signi�cantly increase testcost. Like poor performance, poor testability must be viewed as a designweakness.2.4.3 Inspection versus testingTesting and inspection closely complement each other: the advantages of oneare the disadvantages of the other. Testing operates by examination of run-timebehavior and has two principal advantages:1. Much of the testing task can be automated. While test development islargely manual, tests can often be run with minimal labor cost.2. The results are guaranteed, in the sense that they come from actual exe-cution of production code.Testing has three main disadvantages:1. The results are speci�c, applying only to program behavior on the testinputs. Because there is normally an extremely large number of possibleinputs, most are never tested.2. When failures are found, they are symptoms. Debugging is needed tolocate the fault in the program source, and the debugging is expensive.3. Testing can be applied only to executable work products.The primary advantages of inspections are:



2.5. ESTIMATION 31Table 2.2 Testing versus inspectionTesting InspectionPro Many tasks are automatable. Automation is di�cult. ConResults are guaranteed. Results are suspect.Results are speci�c. Results are general.Con Debugging is still required. No debugging is required. ProExecutable work products only. Executability not required.1. The results are general, often applying to all inputs.2. The errors found are faults in the work product itself. No debugging isneeded to trace from the failure to the fault.3. Any work product can be inspected; executability is not a requirement.The primary disadvantages are:1. Signi�cant bene�ts from automation are unlikely, at least in the near term.2. The results are questionable, because inspection of complex code is itselfcomplex and, therefore, error-prone.The dual nature of testing and inspection is summarized in Table 2.2.2.5 EstimationBecause multi-version, multi-person software projects are so expensive and be-cause the software industry is so competitive, accurate cost estimates are ex-tremely important.2.5.1 Estimating conceptsEstimating the cost of a complex task typically requires three steps:1. Break the task into subtasks. Estimates are best done on relatively smallsubtasks, so the subtasks may themselves need to be broken down.2. Provide a cost estimate for each subtask. Important costs to considerinclude person-hours, calendar time, and machine resources.3. Generate the task cost by summing the subtask costs.Initially, the estimates will be mere guesses, and signi�cant cost overruns will becommon. (Schedule pressure makes overestimates rare.) There are three waysof achieving more accurate estimates:



32 Chapter 2 SOFTWARE ENGINEERING FUNDAMENTALS1. Sketch|partially solve|the task until you have a good understanding ofthe work remaining. Generally, more detailed sketches produce more ac-curate estimates.2. Base your estimate on actual cost �gures from a similar, previous project.Obviously, this approach depends on the availability of cost �gures frompast projects. Thus, it pays to record actual costs carefully.3. Practice. With experience, the accuracy of your estimates will improvesubstantially.2.5.2 Software estimatingEstimates are frequently demanded as part of the requirements analysis phaseand rightly so. Unfortunately, an accurate estimate is di�cult to produce atthis time. With a good requirements speci�cation, much better estimates arepossible; while much is still unknown, the developer's obligation is precisely andcompletely de�ned. The module decomposition step is critical for the estima-tor as well as for the developer; it identi�es the modules and their services.Then, for each module M , �ve subtasks are immediate: the development of M 'sinterface speci�cation, internal design, implementation, test plan, and test im-plementation. Frequently, these tasks are small enough to be estimated directly.Of course, errors in the module decomposition may cause serious errors in theestimate.During maintenance, estimating is often simpler because the existing workproducts suggest much of the task breakdown. For example, given a changerequest, the following steps can be used:� Sketch the changes to the requirements speci�cation and review these withthe user to be sure that the request is well understood.� Determine the modules a�ected by the change. The module guide is specif-ically designed to make this task as easy as possible.� For each a�ected module, review the �ve work products associated withthat module and estimate the change cost for each.In summary, during both new development and maintenance, a disciplined workproduct structure signi�cantly eases the estimator's task.2.6 SummaryWe discuss the central role of documentation in Software Engineering above,and we describe the severe problems resulting from current approaches to doc-umentation. The importance of human-readable system descriptions is empha-sized. We argue for triple-purpose documents, for design, implementation, and



2.7. BIBLIOGRAPHIC NOTES 33maintenance and introduce the seven work products used in this text. We dis-cuss veri�cation, using the complementary techniques of inspection and testing.Speci�cation documents play a key role here: without them there is no basisfor correctness. Finally, we present a simple procedure for estimating and showhow the seven work products support accurate estimates during developmentand maintenance. In the next chapter, we consider the mathematical conceptsunderlying the seven work products.2.7 Bibliographic NotesOur approach to software design and documentation owes much to the writings[1, 8, 37] and lectures of David Parnas, and to others who have applied Parnas'smethods [2, 38, 39]. Royce [40] and Boehm [27] describe alternative softwaredevelopment lifecycles.Software inspection was developed by Fagan [41] and widely applied in in-dustry by Russell [35] and many others. Our inspection strategy was heav-ily inuenced by Harlan Mills; we use his characterization of \proof" and hiscommon-sense approach to the use of mathematical notation in proofs [3]. Dyer[4] describes a similar approach to proofs in inspection meetings. Jackson andHo�man present the results of an industrial experiment in proof-based inspectionof Module Interface Speci�cations [39].Among the many books on software testing, the practical text by Myers [42]is perhaps the best known. Howden [43] presents the theoretical foundations formany testing techniques.





Chapter 3MathematicalFundamentalsThe power of a formal notation should manifest itself in the achievements wecould never do without it. [E. W. Dijkstra]3.1 IntroductionThe purpose of this chapter is to supply the mathematics needed to read, write,and verify the work products introduced in Chapter 2. We focus on speci�cationfunctions : functions that arise naturally in software speci�cations. For speci-�cation functions, the best known description is large and complex. Typically,this description is not a monolithic formula but instead a collection of simpleformulas each applicable to a di�erent situation. Frequently, specifying the dif-ferent situations takes as much e�ort as specifying the behavior required in eachsituation. Thus, the task of partitioning the function domain strongly inuencesthe speci�cation e�ort, the choice of notation, and the veri�cation arguments.The mathematics is simple and familiar; only the function representation is new.Section 3.2 de�nes functions in terms of sets and relations. Section 3.3presents logic, the language of conditions. Logic plays a critical role in par-titioning the domain of a speci�cation function. Section 3.4 presents a simpletype scheme for de�ning structured objects: sets, sequences, and tuples. Sec-tions 3.5 and 3.6 describe the multiple assignment statement and conditionalrules, programming-language-like constructs with simple functional semantics.Section 3.7 introduces Finite State Machines (FSMs), a powerful speci�cationconstruct de�ned in terms of sets and functions. Section 3.8 presents ModuleState Machines (MSMs), a special kind of FSM designed for specifying softwaremodules. 35



36 Chapter 3 MATHEMATICAL FUNDAMENTALSTo make the text reasonably self-contained, we have included an introductionto sets, relations, and logic in this chapter. Most of this material can be foundin any textbook on discrete mathematics, such as Pi� [44]. Similarly, we usestandard notations for representing sets, sequences, and tuples. The readeralready familiar with this material can skip over the �rst few sections of thischapter and read only Sections 3.5, 3.6, 3.7, and 3.8.3.2 Functions3.2.1 SetsA set is an unordered collection of elements. The distinguishing characteristicsof a set are that the number of occurrences as well as the order of the elementsare not de�ned; an element either belongs to a set or it does not. When anelement x belongs to a set S, we write x 2 S, and when it does not, we writex =2 S.There are several ways to de�ne a set. We can enumerate the elements in theset: fx1; x2; : : : ; xng denotes the set with elements x1; x2; : : : ; xn where n � 0.We can use a logical condition: fx j p(x)g denotes the set of all elements x thatsatisfy p(x). For example, f4; 2; 1; 3g andfx j x is an integer between 1 and 4 inclusivegdenote the same set. A third way to de�ne a set is with an integer range of theform [i::j], which denotes the set fx j x is an integer and x � i and x � jg. Forexample, [2::4] = f2; 3; 4g and [7::4] = fg.3.2.2 RelationsA binary relation is a set of ordered pairs. In this text, the only type of relationswe consider are binary relations. For a relation R, the domain of R is the set ofall values appearing as the �rst component of an element in R. The range of Ris the set of the second components. If we let hx; yi denote an ordered pair, thenthe domain of a relation R is fx j hx; yi 2 Rg, and the range is fy j hx; yi 2 Rg.Since a relation is a set, we can de�ne it in the same way as we did with sets.For example, fh0; 1i; h0; 2i; h2; 3ig is a relation with domain f0; 2g and rangef1; 2; 3g. When a relation contains an in�nite number of elements, we can nolonger enumerate the elements, but we can de�ne the relation with a rule. Forexample, fhx; yi j x and y are integers and x < ygde�nes the familiar less-than relation. In this case, both the domain and therange consist of the set of integers.



3.2. FUNCTIONS 373.2.3 FunctionsA function is a relation in which each element in the domain appears exactlyonce as the �rst component of an ordered pair in the relation. Since a functionis a relation, we can de�ne a function in the same way as a relation. We canenumerate the elements; for example, fh0; 1i; h1; 2i; h2; 3ig is a function. How-ever, not all relations are functions: fh0; 1i; h0; 2i; h1; 2ig is not, because 0 is the�rst component of both h0; 1i and h0; 2i. We can also de�ne a function with arule. For example, fhx; yi j x is an integer and y = x2gis a function. On the other hand,fhx; yi j y is an integer and y2 = xgis not a function, because both h4; 2i and h4;�2i are in this set.A function associates each element of the domain with a unique element ofthe range. For function f , we often write f(a) = b when ha; bi 2 f and say thatb is the output of the function f for the input a. Thus, forf = fhx; yi j x is an integer and y = x2gwe have f(0) = 0 and f(2) = 4. Using this notation, we can de�ne a functionby giving a rule that computes the value for each of the inputs. For example, wecan de�ne f by the rule f(x) = x2.When we de�ne a function by a rule, the domain and range of the functionmay not be clear. For example, the function f de�ned by f(x) = x2 could bede�ned over the natural numbers, the real numbers, etc. To reduce ambiguity,we introduce a notation to restrict the domain and range. The expressionf : T1 ! T2states that the domain of f is a subset of T1 and the range of f is a subset ofT2. For example, the expressionsf : integer! integer and f(x) = x2de�ne the integer square function; the domain of f is the integers and the rangeis the set of non-negative integers.Functions can have more than one input or output. This does not violateour original de�nition: each function is a set of ordered pairs. It means that oneor both of the components of the ordered pair can be a composite object, suchas another ordered pair. Many common mathematical functions have more thanone input. For example, the addition function over the integers is de�ned byfhhx1; x2i; yi j x1 and x2 are integers and y = x1 + x2g



38 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.1 Truth table for the logical connectivesp q :p p ^ q p _ q p! q p$ qtrue true false true true true truetrue false false false true false falsefalse true true false true true falsefalse false true false false true trueA clockwise rotation by �=2 radians of a point in two-dimensional Euclideanspace can be de�ned by the functionfhhx1; y1i; hx2; y2ii j x1; y1; x2; and y2 are integers and x2 = y1 and y2 = �x1gThis function takes a pair of numbers as input, and produces a pair of numbersas output.Some functions have as output a truth value. Consider the functionfhx; yi j x is an integer and y = (x > 0)gSome pairs belonging to this function are h0; falsei, h�1; falsei, and h1; truei.As another example, consider the function not : fhtrue; falsei; hfalse; trueig.3.3 Logic3.3.1 Logical expressionsA logical expression is a statement whose truth can be determined. An exampleof such a statement is 5 < 7. Each logical expression has a truth value associatedwith it: either true or false. For example, the truth value of 5 < 7 is true andthat of 7 < 5 is false.True and false are the simplest types of logical expressions. We can formmore complex expressions from simpler ones by using the standard logical con-nectives : :;^;_;!; and $. The truth table in Table 3.1 de�nes the meaningof these logical connectives. There is a row in the truth table for each assign-ment of truth values to p and q. The columns of the truth table de�ne thetruth values for each of the logical connectives, given the truth values for p andq. For example, since both 7 < 5 and 2 + 2 = 5 are false, the truth value of((7 < 5)! (2 + 2 = 5)) is true, as is indicated by the last entry under p! q.With logical expressions, we can make the de�nition of sets, relations, andfunctions more precise and compact. For example, we can de�ne the set [1::10]by the expression fx j x is an integer and (x � 1) ^ (x � 10)g



3.3. LOGIC 39Table 3.2 Truth table for :(:p _ :q)p q :p :q :p _ :q :(:p _ :q)true true false false false truetrue false false true true falsefalse true true false true falsefalse false true true true falseAlthough the expressionfx j x is an integer and (x � 1) _ (x � 10)gis similar, it de�nes quite a di�erent set: the set of all integers.So far we have been careful with the placement of parentheses in logicalexpressions. To avoid an abundance of parentheses, we de�ne a precedence onthe logical connectives. The order of precedence, in decreasing order, is: :, ^,_, !, and $. Sequences with the same logical connective are evaluated left toright. Thus p ^ q _ r ^ s represents (p ^ q) _ (r ^ s), and p ^ q ^ r represents(p ^ q) ^ r.Consider the expression :(:p_:q). Given any pair of truth values for p andq, we can calculate the truth value for the entire expression: replace p and qby their truth values, and simplify the expression with the rules from the truthtable. We can do this for all pairs of truth values for p and q, and summarizethis information in the truth table shown in Table 3.2. Each column containsthe truth values of a subexpression, with the �nal column representing the truthvalue of the expression itself. Note that the entries in the last column are thesame as for p^ q. This means that :(:p_:q) and p^ q are logically equivalent.3.3.2 Quanti�ersIn software engineering, we rely heavily on the use of variables, and we oftenneed to use variables inside logical expressions. Once we introduce variables, wehave to concern ourselves with the type of a variable. Although variable types isthe subject of Section 3.4, we need to briey discuss it here. One problem thatarises is that the expression 5 < x is not de�ned for all values of x; for example, itis not de�ned when x is the color red. To circumvent this problem, we associatewith each variable a type: a set of values from which the variable can take itsvalues. In many cases, the type of a variable is clear from the context. When itis not, the type needs to be stated explicitly.Once we introduce variables, it is useful to quantify a logical expression overa given variable. We therefore introduce the universal quanti�er 8 and theexistential quanti�er 9 as shown in Table 3.3. In this table, the set S denotesthe type of the variable x. When the type of a variable is clear from its context



40 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.3 Quanti�ersQuanti�er Meaning(8x 2 S)(p(x)) for all x 2 S, p(x) is true(9x 2 S)(p(x)) there exists an x 2 S such that p(x) is truewe can omit the set S and abbreviate the quanti�ed statements as (8x)(p(x))or (9x)(p(x)). When we want to quantify over more than one variable it isconvenient to group these variables together. For example, we use (8x; y 2S)(p(x; y)) as a shorthand for (8x 2 S)((8y 2 S)(p(x; y))).The expression (9x 2 S)(p(x)) is true if and only if there exists a value v oftype S such that p(v) is true. The expression (8x)(p(x)) is true if and only ifp(v) is true for all values v of type S. For example, (9x 2 integers)(x < 7) istrue, because there exists an integer x (e.g., 5) such that x < 7. The expression(8x 2 integers)(x < 7) is false, because x < 7 does not hold when, for example,x = 9.We can also nest quanti�ers. Thus, if x and y are both integers, then(8x)(9y)(y < x) is true. If they are both natural numbers, then the expres-sion is false, since there is no natural number smaller than 0. On the otherhand, (9x)(8y)(x � y) is true for the natural numbers, but false for the inte-gers. Another example of a nested quanti�ed statement is the de�nition of thelimit of a function: limx!x0 f(x) = L is de�ned as(8� 2 positive reals)(9� 2 reals)(jx� x0j < � ! jf(x)� Lj < �)where jxj denotes the absolute value of x.Two remarks about variables in quanti�ed statements: �rst, the truth valueof a quanti�ed statement is independent of the name of the variable used in thequanti�er. In other words, just as in many programming languages, variables aremerely place holders. Second, the scope of a variable in a quanti�ed expressionextends only to the smallest subexpression following it. Parentheses may be usedto extend that scope. Thus, (8x 2 S)p(x)^q(x) and (8x 2 S)(p(x)^q(x)) are notlogically equivalent. The �rst one is equivalent to (8y 2 S)p(y)^q(x). Performinga similar renaming for the second expression produces (8y 2 S)(p(y) ^ q(y)).A variable is bound in an expression if it appears in the scope of a quanti�er.A variable is free if it is not bound to any quanti�er. For example, in (8y 2S) p(y) ^ q(x), the variable y is bound, and x is free. Strictly speaking, we canonly talk about the occurrence of a variable being bound or free. For example,in (8x 2 S) p(x)^ q(x), the �rst occurrence of x is bound, and the second one isfree.When an expression contains a free variable, we often cannot determine thetruth value of that expression. For example, we cannot determine if x < 7 istrue or false, without knowing a value for x. If a logical expression contains no



3.4. TYPES 41free variables, then its truth value is de�ned. We have already determined that(8x 2 integers)(x < 7) is false and that (9x 2 integers)(x < 7) is true.3.4 TypesIn this section, we de�ne precisely what we mean by a \type" and we introducethe types and operations that are used in this text. Many other types andoperations are possible.3.4.1 De�ning typesA type is a set of values|any precisely de�ned set is a type. We distinguishprimitive types and user-de�ned types. The primitive types are integer, boolean,char (character), and string. To de�ne a user-de�ned type, the set of valuesbelonging to the type has to be given. A convenient way of de�ning new types iswith type constructors, which allow us to build more complex types from simplerones. The type constructors that are used in this text are set, sequence, andtuple.If T is a type, then x1; x2; : : : ; xn : Tspeci�es that variables x1; x2; : : : ; xn are of type T where n � 1. For example,the statements x: integera; b; c : stringde�ne the integer variable x and the string variables a, b, and c.To de�ne a user-de�ned type, we use a type de�nition, which is of the formT = dwhere T is the name of the new type, and d is its de�nition. For example,color = fred; white; bluegde�nes the new type color as the set fred; white; blueg. We can now declarevariables of type color. For example,x : colorde�nes a variable x of this type.



42 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.4 Operations on integerOperation Meaning+;�;�; = addition, subtraction, multiplication, integer division=; 6= equal, not equal<;�;�; > less than, less than or equal, greater than or equal, greater thanTable 3.5 Operations on strings (s, s1, and s2 are strings)Operation Meanings[i::j] substring of s from position i to position js1 k s2 concatenation of s1 and s2=; 6= equal, not equal2; =2 member, non-members[i] i-th character of sjsj length of s3.4.2 Primitive typesThe integer type is the in�nite set f: : : ;�2;�1; 0; 1; 2; : : :g. The operations oninteger variables are shown in Table 3.4.The boolean type is the set ftrue; falseg. The operations on boolean variablesare the logical connectives shown in Table 3.1.The char type consists of the set of ASCII characters. To represent a char-acter constant, we enclose it in single quotes. The only operations on charactervariables are equality (=) and inequality (6=).The string type consists of all �nite sequences of characters. To represent astring constant, we enclose it in double quotes. For example, "" is the emptystring and "abc" contains the characters 'a', 'b', and 'c'. The operations onstring variables are shown in Table 3.5. Positions in strings are zero-relative.For the substring operation, if i > j, then s[i::j] is de�ned as the empty string.For example, if x = "abcd" and y = "ef", thenx[0::3] = "abcd" x[3::3] = "d" x[3::1] = ""x k y = "abcdef" y k x = "efabcd"'c' 2 x 'c' =2 yx[0] = 'a' x[3] = 'd'jxj = 4 jx[1::2]j = 2 jyj = 23.4.3 SetsA set is an unordered collection of elements of the same type. To declare a setof type T , we use the expression set of T .



3.4. TYPES 43Table 3.6 Operations on setsOperation Meaning[;\;�;� union, intersection, di�erence, Cartesian product=; 6= equal, not equal2; 62 member, non-memberjsj size of set sWe have already seen various ways to de�ne sets. We can enumerate theelements in the set: fx1; x2; : : : ; xng denotes the set with elements x1; x2; : : : ; xn,where n � 0. We can use a logical expression: fx j p(x)g denotes the set ofelements x that satisfy p(x). And we can de�ne a set with an integer range ofthe form [i::j], which denotes the set fx j x 2 integer ^ x � i ^ x � jg.For example, T = set of fred; green; bluegde�nes the type T as the power set (the set of all subsets) of fred; green; blueg.Three possible values for variables of type T are fg, fredg, and fred; blueg. Thedeclaration x : set of integerde�nes the variable x as a set of integers. Among the possible values for x arefg and f1; 3; 5; 7; 9g.The operations on set variables are shown in Table 3.6. For sets a and b,set union, intersection, di�erence, and Cartesian product are de�ned as follows.a [ b = fx j x 2 a _ x 2 bga \ b = fx j x 2 a ^ x 2 bga� b = fx j x 2 a ^ x 62 bga� b = fhx; yi j x 2 a ^ y 2 bgFor example, if a = f1; 2; 3g and b = f2; 3g, thena [ b = b [ a = f1; 2; 3ga \ b = b \ a = f2; 3ga� b = f1g b� a = fga� b = fh1; 2i; h1; 3i; h2; 2i; h2; 3i; h3; 2i; h3; 3ig1 2 a 1 62 bjaj = 3 jbj = 2



44 Chapter 3 MATHEMATICAL FUNDAMENTALS3.4.4 SequencesA sequence is an ordered collection of elements of the same type. Since theelements of a sequence are ordered, an element can occur more than once in asequence. A sequence is sometimes referred to as a list, and it is similar to thearray used in many programming languages. To declare a sequence of type T ,we use the expression sequence of T .We use an expression of the form hx0; x1; : : : ; xni where n � 0 to representthe sequence with elements x0; x1; : : : ; xn. Thus, hi represents the empty se-quence, and h1; 3; 5i represents a sequence with three elements. The positionsin a sequence are zero-relative. For example, the element in position 1 in listh1; 3; 5i is 3, and 1 is the element in position 0.The declaration T = sequence of fred; green; bluegde�nes the type T as the set of all sequences of elements from fred; green; blueg.Three possible values for variables of type T are hi, hredi, and hred; blue; redi.The declaration x : sequence of integerde�nes the variable x as a sequence of integers. Among the possible values for xare hi and h1; 3; 1; 3; 1i.The de�nitions above are for variable-length sequences. To de�ne a �xed-length sequence of type T with length l, we use the expression sequence [l] of T ,where l is a positive integer. Similarly, �xed-size arrays of arbitrary dimensionscan be de�ned by expressions of the formsequence [l1; l2; : : : ; ln] of Twhich is shorthand forsequence [l1] of sequence [l2] of : : : sequence [ln] of TThe operations on sequences are shown in Table 3.7. If a = h1; 2; 3; 4i andb = h5; 6i, thena[0::3] = h1; 2; 3; 4i a[3::3] = h4i a[3::1] = hia k b = h1; 2; 3; 4; 5; 6i b k a = h5; 6; 1; 2; 3; 4i3 2 x 3 =2 ya[0] = 1 a[3] = 4jaj = 4 ja[1::2]j = 2 jbj = 2Note that the operations on sequences are the same as the operations on strings.This is not surprising, since a string is a sequence of characters.We have seen that sequences and strings have many things in common. Theyalso have a common problem. The operations s[i] and s[i::j] on strings and



3.4. TYPES 45Table 3.7 Operations on sequences (s, s1, and s2 are sequences)Operation Meanings[i::j] subsequence of s from position i to position js1 k s2 concatenation of s1 and s2=; 6= equal, not equal2; =2 member, non-members[i] i-th element of sjsj length of ssequences are not always de�ned. For example, for any string or sequence s, thevalue s[�1] is unde�ned. Similarly, if jsj = 2, then s[2] is unde�ned. In general,s[i] is unde�ned if i =2 [0::jsj�1]; s[i::j] is unde�ned if i =2 [0::jsj�1]_j =2 [0::jsj�1].Care is required to avoid such unde�ned values.Special problems arise with logical expressions on sequences. Suppose thatwe want to write an expression that is true for a sequence of integers s if andonly if all the values in s are non-negative. A �rst attempt could be(8i 2 integer)(s[i] � 0)However, when i = �1, s[i] is unde�ned, and s[i] � 0 is neither true nor false. Tosolve the problem we explicitly restrict the type of the variable in the quanti�edstatement, as in (8i 2 [0::jsj � 1])(s[i] � 0)3.4.5 TuplesA tuple is a collection of elements of possibly di�erent types. Each tuple has oneor more �elds associated with it, and each �eld has a unique identi�er called the�eld name. In some programming languages, a tuple is referred to as a recordor a structure. To declare a tuple, we use an expression of the formtuple of (f1 : T1; f2 : T2; : : : ; fn : Tn)where n � 1, fi is the �eld name, and Ti is the �eld type of i-th �eld. If all �eldsare of the same type t, then we use the abbreviated formtuple of (f1; f2; : : : ; fn : T )For example, the declarationpair = tuple of (id : integer; val : string)



46 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.8 Operations on tuplesOperation Meaning=; 6= equal, not equalt:f value of �eld f of tuple tde�nes the type pair to be a tuple with two �elds: the �rst �eld has the nameid and contains an integer, and the second �eld has the name val and containsa string.To de�ne the value of a tuple, we use an expression of the form hx1; x2; : : : ; xniwhere n � 1 and xi is an expression of the same type as the i-th �eld in thetuple. For example, h4; "cat"i is a value of type pair.The operations on tuples are shown in Table 3.8. For example, if x is avariable of type pair and x = h4; "cat"i, then x:id = 4 and x:val = "cat."3.4.6 ExamplesWith type constructors, we can build types of arbitrary complexity. For example,T = set of pairde�nes the type T as a set of pairs. We could equally well declare T by theexpression T = set of tuple of (id : integer; val : string)Examples of values of this type are fg and fh1; "cat"i; h3; "dog"ig.We can now de�ne functions on variables of this type. The functionf : T ! boolean; where f(S) = (8x 2 S)(x:id > 0)returns true if and only if the �eld id for all the tuples in the set S is greaterthan 0. For example, f(fg) = true, f(fh1; "cat"i; h3; "dog"ig) = true, andf(fh1; "cat"i; h0; "dog"ig) = false.3.5 The Multiple Assignment StatementThe multiple assignment statement assigns values to variables. The general formof the multiple assignment statement isv1; v2; : : : ; vn := e1; e2; : : : ; enwhere n � 1, the vis are distinct variables, and each ei is an expression of thesame type as vi. To evaluate the above statement, �rst compute the values of



3.5. THE MULTIPLE ASSIGNMENT STATEMENT 47Table 3.9 Examples of multiple assignment statementsBefore AfterAssignment x y x yx; y := 0; 10 1 2 0 104 7 0 10x; y := 10; x 1 2 10 14 7 10 4x; y := y; x 1 2 2 14 7 7 4all the expressions ei and then assign these values simultaneously to the corre-sponding variables vi. When n = 1 we have the more familiar single assignmentstatement, which assigns a value to a single variable.Some examples of multiple assignment statements arex; y := 0; 10x; y := 10; xx; y := y; xThe �rst assignment statement assigns 0 to x and 10 to y. The second oneassigns 10 to x and assigns the value of x to y. Note that this does not have thesame e�ect as performing the single assignments x := 10 and y := x one after theother. The third assignment interchanges the values of x and y. Table 3.9 showsthe e�ect of these three multiple assignment statements for di�erent values of xand y.The multiple assignment statement is a convenient tool for de�ning the mean-ing of pieces of code. We de�ne the state of a program to be the values of thevariables in the program at a given time. To represent a state, we de�ne anorder to the variables and use a tuple of the form hv1; v2; : : : ; vni to representthe values of the variables, where n is the number of variables in the program.For example, if program P contains the integer variables x, y, and z, then a stateis represented by a triple hv1; v2; v3i where v1 represents the value of x, v2 thevalue of y, and v3 the value of z. The state space is the set of all states. Thus,the state space for program P isfhv1; v2; v3i j v1 2 integer ^ v2 2 integer ^ v3 2 integerg:Note that to interpret a tuple in the state space, we need to know not onlythe variables in the program, but also the order in which these variables arerepresented.We can now view the multiple assignment statement as a function on the statespace of the program. In the following, we assume that the state space consists oftriples of values for variables x, y, and z. For example, the assignment x := y+1



48 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.10 Meaning of example multiple assignment statementsAssignment Meaningx; y := 0; 10 fhhx1; y1; z1i; hx2; y2; z2ii j x2 = 0 ^ y2 = 10 ^ z2 = z1gx; y := 10; x fhhx1; y1; z1i; hx2; y2; z2ii j x2 = 10 ^ y2 = x1 ^ z2 = z1gx; y := y; x fhhx1; y1; z1i; hx2; y2; z2ii j x2 = y1 ^ y2 = x1 ^ z2 = z1gde�nes the functionfhhx1; y1; z1i; hx2; y2; z2ii j x2 = y1 + 1 ^ y2 = y1 ^ z2 = z1gBoth the input and output of this function are integer triples. The �rst valueof the output triple is the second value of the input triple incremented by one,and the second and third values of the output triple are the same as those of theinput triple. Note that in this representation, we have considerable freedom inthe choice of variable names. For example, we could also usefhha; b; ci; hd; e; fii j d = b+ 1 ^ e = b ^ f = cgto de�ne the meaning of the above assignment statement. Table 3.10 shows thefunctions de�ned by the multiple assignment statements in Table 3.9.Consider the sequence of assignmentsx := y + 1y := x� zWe can express the meaning of this sequence of assignments as the functionfhhx1; y1; z1i; hx2; y2; z2ii j x2 = y1 + 1 ^ y2 = (y1 + 1)� z1 ^ z2 = z1gwhich is the same function as de�ned by the multiple assignment statementx; y := y + 1; (y + 1) � z. In general, for any sequence of assignments, we can�nd a multiple assignment statement that de�nes the same function.3.6 Conditional RulesA conditional rule is an expression of the form(c1 ) r1 j c2 ) r2 j : : : j cn ) rn)where n � 1, the cis are logical expressions, and the ris are rules. We call ci ) rithe i-th component of the rule, ci a condition, and ri a rule. To apply the aboveconditional rule, evaluate the conditions in order, starting with c1; for the �rstci that evaluates to true, apply rule ri. If no condition evaluates to true, thenthe conditional rule is unde�ned.



3.6. CONDITIONAL RULES 49We can use a conditional rule to de�ne the value of a function. For example,we can de�ne the minimum function with the rulemin(x; y) = (x � y ) x j x > y ) y)Sometimes it is useful to nest one conditional rule inside another. For example,we can de�ne a lexicographic order on pairs of integers hx; yi with the rulehx1; y1i < hx2; y2i = ( x1 < x2 ) true jx1 = x2 ) (y1 < y2 ) true j y1 � y2 ) false) jx1 > x2 ) false)This rule is equivalent to the simple conditional rule( x1 < x2 ) true jx1 = x2 ^ y1 < y2 ) true jx1 = x2 ^ y1 � y2 ) false jx1 > x2 ) false)which can be shown from the de�nition of conditional rule.Another application of a conditional rule is to de�ne the meaning of a pro-gram, i.e., a function on the state space of the program. For example, we cande�ne the meaning of the statementif (x < y) then z := x else z := ywhich assigns the minimum of x and y to z, with the conditional rule(x < y ) z := x j x � y ) z := y)Similarly, we can express the meaning of a piece of code that sorts the variablesx and y with the conditional rule(x < y ) x; y := x; y j x � y ) x; y := y; x)For long conditional rules, it is often clearer to express the conditional ruleas a table. Translating a conditional rule to tabular form is straightforward. Forexample, Table 3.11 contains the tabular form of the conditional rulemin(x; y) = (x � y ) x j x > y ) y)In the tabular form, we use one row for each component; the �rst column containsthe condition, and the second column the rule. Similarly, Table 3.12 shows thetabular form of the conditional rule(x < y ) x; y := x; y j x � y ) x; y := y; x)In this case, we use two columns to de�ne the rule part. The tabular form



50 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.11 Tabular form for conditional rule de�ning minimum functionCondition min(x; y)x � y xx > y yTable 3.12 Tabular form for conditional rule de�ning sorting of two variablesCondition x := y :=x < y x yx � y y xbecomes particularly attractive for nested rules, where we can use indenting inthe condition column to indicate the nesting. For example, Table 3.13 containsthe tabular form of the conditional rulehx1; y1i < hx2; y2i = ( x1 < x2 ) true jx1 = x2 ) (y1 < y2 ) true j y1 � y2 ) false) jx1 > x2 ) false)We end this section by pointing out the di�erence between the logical con-nective \!" and a conditional rule with one component. In the following, weassume that x and y are integer variables. The conditional rule(x < y ) false)de�nes a function on pairs of integers hx; yi that is false if x < y, and not de�nedotherwise. The logical expressionx < y ! falseTable 3.13 Tabular form for conditional rule de�ning lexicographic orderCondition hx0; y0i < hx1; y1ix0 < x1 truex0 = x1y0 < y1 truey0 � y1 falsex0 > x1 false



3.7. FINITE STATE MACHINES 51�
�	 -UP�DOWN�
�	 -UP�DOWN�
�	 -UP�DOWN�
�	 -UP�DOWN0 1 2 3 �
�	4��-DOWN ��� UPFigure 3.1 Counter �nite state machineis de�ned for all values of x and y; it is false if x < y, and true otherwise. Thefollowing conditional rule is equivalent:(x < y ) false j x � y ) true)3.7 Finite State MachinesIn this section, we consider various kinds of Finite State Machines (FSMs) thatdi�er in the way they produce output. However, every FSM contains at leastthe following four components:� S: a �nite set of states.� s0: the initial state (s0 2 S).� I : a �nite set of inputs.� T : S� I ! S: the transition function, where T (s; x) de�nes the new statefor input x while in state s.For example, Figure 3.1 shows the states and transitions for an FSM thatmodels a counter that is incremented by the input UP and decremented by theinput DOWN . When the counter reaches its maximum value, 4, the input UPhas no e�ect, and when its value is 0, the input DOWN has no e�ect. In thiscase, the set of states S is f0; 1; 2; 3; 4g, the initial state s0 is 0, the set of inputsI is fUP;DOWNg, and the transition function T is de�ned by the conditionalrule in Table 3.14.So far, we have only considered inputs, states, and transitions of an FSM.When we use an FSM for software speci�cation, we are interested in describ-ing the input/output behavior of the software. As a result, we are not reallyinterested in the states and the transitions of the FSM: the sole purpose of thestates and transitions is to de�ne the input/output behavior. We will now lookat two methods for associating outputs with an FSM. We can then use FSMs forsoftware speci�cation by requiring that, for each input sequence, the softwareproduces the same output as the FSM.The �rst type of output that an FSM can produce is called an event output,which is an output associated with a transition of an FSM. That is, we canassociate a set of event outputs OE with an FSM and de�ne an event-output



52 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.14 Transition function for counter �nite state machineCondition T (s; x)x = DOWNs = 0 0s 2 [1::4] s� 1x = UP s 2 [0::3] s+ 1s = 4 4Table 3.15 Event-output function for counter �nite state machineCondition E(s; x)s = 0 x = DOWN ALARMx = UP NORMALs 2 [1::3] NORMALs = 4 x = DOWN NORMALx = UP ALARMfunction E : S � I ! OE , where E(s; x) is the event output associated with thetransition corresponding to state s and input x.For example, Table 3.15 de�nes an event-output function for the counter FSMshown in Figure 3.1. The set of event outputs OE is fALARM;NORMALg.The event-output function E de�nes the event output as ALARM when theinput is DOWN and the counter cannot be decremented any further, or whenthe input is UP and the counter has reached its maximum value. In all othercases, E de�nes the output as NORMAL. Intuitively, the ALARM outputsigni�es a failure of the FSM to properly maintain the count of UP and DOWNevents.The second type of output is called a condition output, which is an outputassociated with a state. In this case, we associate a set of condition outputs OCwith an FSM and de�ne a condition-output function C : S ! OC where C(s) isthe condition output associated with state s.Table 3.16 de�nes a condition-output function for the counter FSM shownin Figure 3.1. The set of condition outputs OC is fNORMAL;WARNINGg.The condition-output function C de�nes the condition output as WARNINGwhen the counter is at its minimum or maximum value, and as NORMAL inall other cases. Intuitively, the WARNING output signi�es that the next inputmay cause the FSM to fail.



3.8. MODULE STATE MACHINES 53Table 3.16 Condition-output function for counter �nite state machineCondition C(s)s = 0 WARNINGs 2 [1::3] NORMALs = 4 WARNINGIn summary, every FSM has a set of inputs, a set of states, an initial state,and a state transition function. In addition, the types of FSMs we are interestedin also have event outputs, condition outputs, or both. Since event outputs areassociated with transitions, they are instantaneous and available only duringthe transition. Therefore, event outputs are well suited to model the outputof functions in software. Condition outputs, on the other hand, are associatedwith states and their value is unchanged until the next transition. Therefore,condition outputs are well suited to model screen output.The type of FSM de�ned in this section is known as aMealy machine if it hasan event-output function and as a Moore machine if it has a condition-outputfunction. There are many other types of �nite state machines, such as non-deterministic state machines or state machines based on �nal states rather thanoutput functions. Some of the FSMs that we will consider in this text are non-deterministic: more than one transition or output is possible for a given stateand/or input. To de�ne a non-deterministic FSM, we replace one or more ofthe transition, event-output, or condition-output functions by relations. In thenext section, we consider MSMs: a special kind of FSM designed for specifyingsoftware modules.3.8 Module State MachinesModule state machines (MSMs) provide the mathematical basis for three workproducts: Module Interface Speci�cation, Module Internal Design, and ModuleImplementation. Here we describe a language for specifying MSMs and illustratethe language features on two examples.3.8.1 Speci�cation sectionsAn MSM consists of a state declaration and one section for each access routine,describing its behavior in terms of the state. The state variables section de-�nes the speci�cation state space by declaring a collection of typed variables.The access routine semantics section contains one subsection for each accessroutine. Each subsection contains two entries, whose form depends on whetherthe access routine is a set, get, or set-get routine.



54 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.17 list module state machine|access routinesRoutine name Input Output Exceptions inits add integer fullinteger poss del integer poss val integer posintegerg val integer integer pos� Set access routine entries. A transition and an exceptions entry arerequired. The transition entry speci�es a state transition: new values forthe state variables expressed in terms of the old values. The transition isusually speci�ed by a multiple assignment statement, with state variableson the left-hand side. In some cases, it is important to explicitly distinguishbetween the new and old state values. For state variable x, pre(x) refersto x's value just before the transition; post(x) refers to its value just after.The exceptions entry speci�es the situations in which each exception mustbe signaled. The exceptions are speci�ed by an assignment to the specialvariable exc, or by \none," indicating that no exception is ever signaled.� Get access routine entries. An output and an exceptions entry are re-quired. The output entry describes the access routine return value, spec-i�ed by an assignment to the special variable out. The exceptions entryis as for set routines.� Set-get access routine entries. A transition-output and an exceptionsentry are required. The transition-output describes a state transitionand an output. The transition is speci�ed as in the transition section ofa set call; the output is speci�ed as in the output section of a get call.The exceptions entry is as for set routines.3.8.2 Example: list moduleConsider the list module, which provides access to a list of at most N inte-gers. List elements are accessed by position (zero-relative), and elements maybe added and deleted at any position. The access routines for list are shownin Table 3.17. s init initializes the module, with the list empty. s add(i; x)inserts x at position i, and s del(i) deletes the element at position i. s val(i; x)replaces the value at position i with x, and g val(i) returns the value at positioni. The access routine semantics are shown in Figure 3.2. The state is thesingle variable s, holding the list contents. s init assigns the empty list to s and



3.8. MODULE STATE MACHINES 55state variabless : sequence of integeraccess routine semanticss init:transition: s := hiexceptions: nones add(i; x):transition: s := s[0::i� 1] k hxi k s[i::jsj � 1]exceptions: exc := (jsj = N ) full j i 62 [0::jsj] ) pos)s del(i):transition: s := s[0::i� 1] k s[i+ 1::jsj � 1]exceptions: exc := (i 62 [0::jsj � 1]) pos)s val(i; x):transition: s[i] := xexceptions: exc := (i 62 [0::jsj � 1]) pos)g val(i):output: out := s[i]exceptions: exc := (i 62 [0::jsj � 1]) pos)Figure 3.2 list module state machine|semanticsnever signals an exception. s add(i; x) inserts x immediately following s[i � 1]and signals the exception full if s has N elements and the exception pos if iis out of range. Note that insertions are permitted at position jsj, even thoughthis position is one beyond the end of s. s del(i) removes s[i], signaling pos ifi is out of range. s val(i; x) simply assigns x to s[i] and g val(i) returns s[i].Both signal pos if i is out of range.Table 3.18 shows two examples of an execution table: a tabular descriptionof the \execution" of a trace|a sequence of calls|by an MSM. There is one rowfor each call in the trace, and a column for the call, the new state, the output,and the exception associated with the call. In table (a), the elements are storedin the order they are added. In table (b), the s add position parameter causesthe elements to be stored in the reverse order.3.8.3 Additional speci�cation rulesIn the description of MSMs above, several important issues have been ignored.� Non-determinism. For a given access routine call, is more than one newstate permitted? Is more than one output or exception permitted? Wenormally use an MSM as a speci�cation. In this role, non-determinism in-dicates that the implementor has some freedom in the observable behaviorof the implementation.



56 Chapter 3 MATHEMATICAL FUNDAMENTALSTable 3.18 list module state machine|execution tables (N = 3)(a) Call New state Output Exception(1) s init hi | |(2) s add(0; 10) h10i | |(3) s add(1; 20) h10; 20i | |(4) s add(2; 30) h10; 20; 30i | |(5) g val(2) h10; 20; 30i 30 |(b) Call New state Output Exception(1) s init hi | |(2) s add(0; 10) h10i | |(3) s add(0; 20) h20; 10i | |(4) s add(0; 30) h30; 20; 10i | |(5) g val(2) h30; 20; 10i 10 |� Exception semantics. When an exception occurs, are there any constraintson the new state or output?� Completeness. Are there calls for which no transition or output is speci�ed?In other words, are there traces for which there is no speci�ed behavior?Di�erent answers to these questions give rise to di�erent MSM de�nitions. Wenext provide one set of answers: the ones used for all MSMs in this text.� Non-determinism. MSMs are non-deterministic in a number of ways. Forset calls, the transition may be non-deterministic, for get calls the outputmay be non-deterministic, and for set-get calls both the transition andoutput may be non-deterministic. However, for all access routines, theexception behavior must be deterministic.� Exception semantics . When an exception occurs, we constrain the statetransition, but not the output. Suppose that call C causes an exception.If C is a set call, then no state transition occurs. If C is a get call, thenthe output is dontcare: any output of the correct type is permitted. If Cis a set-get call then no transition occurs and the output is dontcare.� Completeness . MSMs must be complete. Whenever the exceptions entrydoes not indicate an exception, the transition, output, or transition-output entry must provide the normal-case behavior.These rules are summarized in Table 3.19.



3.8. MODULE STATE MACHINES 57Table 3.19 Module state machines|semantics summaryCall Normal case Exceptionsset transition speci�es exceptions speci�es 0 or 1 exception(s).1 or more states. transition ignored: no state change.get output speci�es exceptions speci�es 0 or 1 exception(s).1 or more outputs. output ignored; any output permitted.set-get transition-output speci�es exceptions speci�es 0 or 1 exception(s).1 or more state/output pairs. transition-output ignored:no state change; any output permitted.Table 3.20 elist module state machine|access routinesRoutine name Input Output Exceptiong exval integer booleang pos integer integer vals delval integer valsg val integer empty3.8.4 Example: extended list moduleThe elist (extended list) module provides extensions to the list module, illus-trating the rules described in the previous section. The elist module supportsthe access routines shown in Table 3.20, as well as the list access routines. Thesemantics for the list access routines are unchanged. The semantics for the newaccess routines are shown in Figure 3.3 and paraphrased as follows: g exval(x)returns true or false according to whether x is in s. g pos(x) returns the posi-tion of x in s and signals val if x does not occur in s. If x occurs in more thanone position, then any one of these positions is a correct out value. s delval(x)deletes the element with value x and signals val if x does not occur in s. Again,if x occurs in more than one position, then any one of these may be deleted. Notethe use of pre in the transition entry to ensure that it is clear which versionof s is intended. sg val returns the value of some element of s and deletes it,signaling empty if s has no elements. Both the transition and the output arenon-deterministic.Table 3.21 shows execution tables illustrating the rules for exception seman-tics, assumingN = 3. In table (a), the s add call in line 5 generates the exceptionfull. There is no change in state, even though the expression in the transitionentry is de�ned. Table (b) shows a g val call causing exception pos. While theoutput 0 is shown, any other integer is equally correct.Table 3.22 shows execution tables illustrating the rules for non-deterministictransitions and outputs. In table (a), the g pos call returns 0; 2 is also accept-
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access routine semanticsg exval(x):output: out := x 2 sexceptions: noneg pos(x):output: out := i where (i 2 [0::jsj � 1] ^ s[i] = x)exceptions: exc := (x 62 s) val)s delval(x):transition: s := s[0::i� 1] k s[i+ 1::jsj � 1], where pre(s)[i] = xexceptions: exc := (x 62 s) val)sg val:transition-output: s; out := s[0::i� 1] k s[i+ 1::jsj � 1]; s[i]where i 2 [0::jpre(s)j � 1]exceptions: exc := (jsj = 0) empty)Figure 3.3 elist module state machine|semantics

Table 3.21 elist module state machine|execution tables (N = 3)(a) Call New state Output Exception(1) s init hi | |(2) s add(0; 10) h10i | |(3) s add(1; 20) h10; 20i | |(4) s add(2; 30) h10; 20; 30i | |(5) s add(3; 40) h10; 20; 30i | full(b) Call New state Output Exception(1) s init hi | |(2) s add(0; 10) h10i | |(3) s add(1; 20) h10; 20i | |(4) g val(2) h10; 20i 0 pos



3.9. SUMMARY 59Table 3.22 elist module state machine|execution tables (N = 3)(a) Call New state Output Exception(1) s init hi | |(2) s add(0; 10) h10i | |(3) s add(1; 20) h10; 20i | |(4) s add(2; 10) h10; 20; 10i | |(5) g pos(10) h10; 20; 10i 0 |(b) Call New state Output Exception(1) s init hi | |(2) s add(0; 10) h10i | |(3) s add(1; 20) h10; 20i | |(4) s add(2; 10) h10; 20; 10i | |(5) s delval(10) h10; 20i | |(c) Call New state Output Exception(1) s init hi | |(2) s add(0; 10) h10i | |(3) s add(1; 20) h10; 20i | |(4) s add(2; 10) h10; 20; 10i | |(5) sg val h10; 10i 20 |able. Similarly, in table (b) the s delval call shows a new state of h10; 20i;h20; 10i is also correct. Table (c) illustrates transition-output non-determinism.While the new state/output pair shown is h10; 10i=20, the pairs h10; 20i=10 andh20; 10i=10 are also correct.3.9 SummaryWe discussed the mathematics needed for specifying functions that naturallyarise in software speci�cations. The notations use the familiar notions of setsand relations, and the standard logical connectives and quanti�ers.We rely on a simple type scheme based on the primitive types integer,boolean, char, and string, and three type constructors: sets, sequences, and tu-ples. Sets provide unordered collections of elements of the same type, sequences



60 Chapter 3 MATHEMATICAL FUNDAMENTALSprovide ordered collections of elements of the same type, and tuples provide col-lections of elements of possibly di�erent types. These type constructors can becombined to build types of arbitrary complexity.The multiple assignment statement and the conditional rule are two speci-�cation constructs with simple functional semantics. The multiple assignmentstatement is a generalization of the familiar (single) assignment statement, andthe conditional rule is similar to the case statement provided by some program-ming languages. For long and complex conditional rules, it is often clearer toexpress the rule in tabular format. Tabular conditional rules are used heavily inSHAM Requirements Speci�cations.The Finite State Machine (FSM) is a powerful speci�cation construct. EachFSM has a set of inputs, a set of states, an initial state, and a state transitionfunction. The FSMs we are interested in also have outputs. A Module State Ma-chine (MSM) is a special kind of FSM designed for specifying software modules.MSMs form the mathematical basis for three work products: Module InterfaceSpeci�cation, Module Internal Design, and Module Implementation.3.10 Bibliographic NotesTextbooks on discrete mathematics such as Pi�'s [44] cover many of the topicsdiscussed in this chapter. In addition, many texts discuss each of these topics inmore detail. Sets, relations, and functions are covered in the classic set theorytext by Halmos [45]. Hodges [46] provides a good introduction to logic, andEnderton [47] covers the topic in depth. Our types and type constructors aregeneralizations of the types found in programming languages such as Pascal [48].A more formal treatment of types can be found in the literature on algebraicspeci�cations [49], the Z notation [11], and functional programming [50]. Themultiple assignment statement and conditional rule are taken directly from thetext by Linger et al. [3]. Finite State Machines are covered in most texts onautomata theory [51]. Output automata, such as our Module State Machines,and equivalences between pairs of output automata are described in more depthby Nelson [52] and Ho�man and Jones [53].
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Chapter 4IntroductionAnd now I see with eyes serene, the very pulse of the machine.[W. Wordsworth]4.1 The SHAM System4.1.1 PurposeThe raison d'être of SHAM, the Strooper-Ho�man Abstract Machine, is todemonstrate methods for specifying, designing, implementing, and testing soft-ware systems. The important considerations for selecting SHAM as an exampleare that:1. SHAM is su�ciently complex to demonstrate the methods.2. SHAM is easy to learn, so that the emphasis can be on teaching the meth-ods, rather than on teaching SHAM.3. SHAM is entertaining enough that the reader is encouraged to read theremainder of this book.However, no e�ort was made to make SHAM \realistic," in the sense of a useful,complex, or even industry-like system. SHAM is indeed a sham.To make reasonable decisions about what services to include in SHAM, ithelps to de�ne a hypothetical purpose for it. In the remainder, we assume thatSHAM is a simple assembler used for teaching the basic aspects of primitive vonNeumann{style programming, where both program and data are stored in mem-ory, and the processor operates in a simple fetch-and-execute cycle. In settingout the requirements for SHAM, we follow an ASAP approach, which in this casestands for \as simple as possible." Despite its simplicity, SHAM is su�cientlycomplex to demonstrate the methods, and surprisingly subtle speci�cation, de-sign, and veri�cation issues arise. 63



64 Chapter 4 INTRODUCTION4.1.2 Overview of services o�eredAs explained in Chapter 1, during the Requirements Analysis phase of a softwareproject the basic services o�ered by the system are determined. While this textdoes not cover the Requirements Analysis phase in detail, we briey discuss thekey requirements decisions made for SHAM.We focus on the following questions.� What is the register and memory model? We must decide how many reg-isters there are, and how they are used. For example, we must decide ifindex registers are supported. Similarly, we must decide on the memorymodel; for example, is virtual memory supported?� What is the instruction format? We must decide whether an instructionoccupies one, two, or more memory locations, what types of operands areallowed, and how the operands are stored.� What instructions are supported? We need instructions to support memoryaccess, arithmetic functions, branching, and miscellaneous tasks such asinput/output.� What is the user interface? Does SHAM operate in batch or interactivemode? A good case can be made for both modes of operation. A batch ver-sion is simpler to implement and is terminal-independent, so that SHAMcan run in many di�erent environments. However, an interactive versioncan demonstrate key issues relating to keyboard and terminal support insoftware speci�cation, design, and veri�cation. Moreover, an interactiveversion is more intuitive for the user, better serving our hypothetical pur-pose of teaching von Neumann{style programming.Possible answers to these questions are discussed in most books on computerarchitecture [54]. We now discuss the decisions that were made for SHAM.Clearly these decisions are somewhat arbitrary, but in our decisions we are guidedby the ASAP principle.� Register and memory model . SHAM has two registers: the accumulator,acc, and the program counter, pc. A at memory model is used with asingle memory array, accessed through integer addresses. Neither indexregisters nor virtual addressing is supported.� Instruction format . Each instruction is stored in a single memory loca-tion. Only numeric operands are supported and, for instructions with anoperand, the operand also occupies a single memory location. Only un-signed decimal values are supported.� Instruction set . Table 4.1 shows the SHAM instructions. Note that thereis no way to read input in SHAM; input values must be hard-coded intothe program using LOADCON .



4.1. THE SHAM SYSTEM 65Table 4.1 SHAM instruction setInstruction Operand DescriptionMemory accessLOAD a load value at address a into accSTORE a store acc at address aArithmeticADD a add value at address a to accSUBTRACT a subtract value at address a from accBranchBRANCH a branch to address aBRANCHZERO a branch to address a if acc = 0BRANCHPOS a branch to address a if acc > 0MiscellaneousLOADCON i load integer i into accPRINT print value of accHALT terminate SHAM� User interface. Since a batch and an interactive interface to SHAM areboth useful, we provide two versions. BSHAM o�ers a batch interface; thesource program is stored in a �le and run in a load-and-go fashion. Theonly output produced by this version is error messages and integers printedwith the PRINT instruction. The second version, ISHAM, provides aninteractive interface; the registers and memory are displayed on the screenand the user single-steps through program execution.It is clear that after a system such as SHAM is placed into production,changes will be requested. Some of the likely changes are inuenced by theabove decisions. For example, it is easy to imagine that the user would wantmore instructions, index registers, or symbolic addresses. Another source forchange requests is the user interface. For example, changes to the syntax of theSHAM input �le or the screen format for the interactive version are likely to berequested. These, and other, likely changes are documented in the RequirementsSpeci�cation, so they can be taken into account when designing the system.4.1.3 Overview of work productsSection 2.3 discusses the seven work products that we use in the developmentof SHAM. In the following chapters, we describe each of these work productsin detail; we now review the particular instances of each of the work productsthat exist for SHAM. There is one Requirements Speci�cation for SHAM, butit contains two parts. The �rst part de�nes the behavior of BSHAM, the batchversion, and the second part de�nes the behavior of ISHAM, the interactiveversion. Since there are few di�erences between the two versions, the second



66 Chapter 4 INTRODUCTIONpart is written as an addendum to the �rst and de�nes only the ways in whichthe interactive version is di�erent.There is one Module Guide for SHAM; it de�nes the modules for bothBSHAM and ISHAM. There are nine modules in SHAM. Three of these,absmach, load, and token, are used in exactly the same way in BSHAM andISHAM. Two modules, exec and sham, are used in both versions, but in slightlydi�erent ways in each version. And four modules, keybdin, scndr, scngeom,and scnstr, are used only in ISHAM. Finally, there are two modules, stackand symtbl, that are not part of SHAM proper, but that we frequently use forillustration.For most of the SHAM modules, there is a Module Interface Speci�cation,a Module Internal Design, a Module Implementation, a Test Plan, and a TestImplementation. However, for some modules one or more of the work productsare omitted; only the Module Implementation is always present. For example, forsome modules there is no Test Implementation because the module is best testedduring system testing. Finally, there is a Test Plan and a Test Implementationfor the system testing of both the BSHAM and the ISHAM systems.4.1.4 Document conventions and notationsEach work product has its own conventions and notations; these are explained inthe appropriate chapters. However, certain conventions and notations are usedin all work products.There is an abbreviation for each of the work products: RS for RequirementsSpeci�cation, MG for Module Guide, MIS for Module Interface Speci�cation,MID for Module Internal Design, MI for Module Implementation, TP for TestPlan, and TI for Test Implementation.By default, all identi�ers are shown in italics. The one exception to thisrule is that all code fragments (from the Module Implementation and the TestImplementation) are shown in typewriter font.In the MG, a unique pre�x is de�ned for each SHAM module. For example,the pre�x for the stack module is ps , for \pushdown stack." The pre�x formodule M is used on all identi�ers exported by M . Thus, the initializationaccess routine for stack is called ps s init. The pre�x of an identi�er is alwaysincluded when the identi�er appears in a work product. However, for readability,we omit the pre�x when we reference the identi�er in the text, unless this leadsto confusion. For example, we use s init if it is clear that we are referring tothe initialization routine for stack.4.2 Overview of Part IIThe remaining chapters in Part II discuss the work products in detail. Chapter 5explains how the required behavior of a system is captured in the RequirementsSpeci�cation. The module decomposition of a system, which is recorded in the



4.2. OVERVIEW OF PART II 67Module Guide, is described in Chapter 6. Chapter 7 discusses the design ofmodule interfaces, and the Module Interface Speci�cation that is used to recordthis design. The Module Internal Design speci�es the internal data structuresof a module and is discussed in Chapter 8 and the Module Implementation isdiscussed in Chapter 9. Finally, Chapter 10 discusses the testing phase and itsassociated work products, the Test Plan and the Test Implementation.





Chapter 5Requirements Speci�cationObservability is the essence of speci�cation.5.1 IntroductionThe goal of the Requirements Speci�cation (hereafter \RS") is to precisely spec-ify the required behavior of a software system. The idea is to make the \whatdecisions" explicitly up front, not implicitly during design and implementation.The RS supports the four roles described in Section 2.2. Here the users are theend users, and the designers are the requirements engineers. The developers arethe sta� who write the Module Guide, Module Interface Speci�cations, ModuleInternal Designs, and Module Implementations. The veri�ers are the inspectorsand testers, especially the system testers.To support these four groups of people, a well-organized reference document isneeded. The RS de�nes all the required system behavior in one place, accuratelyand consistently. Both normal and exceptional behavior are speci�ed. The RSsupports the software development process in a number of important ways:� Serves as a contract between the users and the developers. The require-ments typically include too many details to memorize and frequently con-tain decisions hammered out in intense negotiations. A written record iscritical.� Ensures that developers need not decide what is best for users. It is not fea-sible for every developer to be an expert in the application area. However,the RS can provide the developer with the information needed to makegood design decisions.� Provides essential support for independent veri�cation. Often, a developerand veri�er disagree on system correctness. The RS provides an authori-tative source for resolving these disputes.69



70 Chapter 5 REQUIREMENTS SPECIFICATION� Supports estimates of time and resources. Without a detailed descriptionof the required behavior, accurate cost estimation is rarely possible.� Provides protection against personnel turnover. In software development,frequent turnover is a fact of life. If the requirements information is storedonly in a developer's head, then that information leaves when the developerleaves.� Supports the maintainer. Many maintainers were not members of the orig-inal development team, and therefore they rely heavily on the RS to obtainthe required system behavior.In the remainder of this chapter, we de�ne the RS work product, review indetail the BSHAM and ISHAM RSs, and describe the veri�cation of RSs. Thefull BSHAM RS and ISHAM RS may be found in Appendix A.5.2 Work Product De�nitionIt pays to recognize the type of information commonly recorded in an RS andto de�ne a standard document structure to organize that information. Whenproperly designed, standardized documents are easier to write, read, verify, andmaintain.5.2.1 Document sectionsOur RSs are based on �nite state machines (FSMs) and are divided into sevensections. The Overview section provides a brief description of both the systemspeci�ed and the speci�cation document itself. The required hardware and soft-ware environment and the notational conventions used in the document are alsode�ned.The Environment variables section de�nes variables that are used tomodel relevant aspects of the system's environment. An environment variabledeclaration speci�es a name, a type, and an interpretation: the relationshipbetween the variable value and the environment. Environment variables are di-vided into two groups: input variables|which the system may read, but notmodify|and output variables|which may be written but not read. For exam-ple, the ISHAM screen can be modeled with the output environment variablescn: scn : sequence [24][80] of charscn[r][c] is the character at screen row r and column c,with numbering zero-relative and beginning at the upper-left corner.According to the declaration, scn[23][0] = 'x' is true if there is an 'x' in thelowest, leftmost position of the terminal screen.



5.2. WORK PRODUCT DEFINITION 71The State machine section is the core of the speci�cation and de�nes one ormore FSMs (see Section 3.7). In practice, the FSM descriptions are rarely com-pletely formal; such descriptions are too long and cumbersome to justify theirdevelopment and maintenance cost. Instead, parts of the FSM are described for-mally, while other parts are sketched or omitted entirely. Generally, we sketch oromit what is obvious or unimportant. Rather than strive for complete formality,we ensure that the description is complete and precise enough that the requiredbehavior is clear. In principle, from the RS description, the reader should beable to construct a completely formal FSM.Constants, types, and functions, using the concepts and notations presentedin Chapter 3, make the RS easier to understand and maintain. For example,in the Functions section of the BSHAM RS, a function is used to compactlyspecify the text for exception messages.In a successful system, change is inevitable. Changes in the application area,the need for improved performance, and upgrades to the hardware and softwareenvironment all force systems to be modi�ed. The knowledge of what changesare likely is extremely valuable to the designer, because it allows him or herto structure the system so that those changes are inexpensive to make. Suchdesign for change is the focus of Chapter 6. To support design for change, eachRS contains an Expected changes section, describing the changes likely to berequested after system development is complete.While it is not possible to predict all future changes, certain types of changesoccur often and can be predicted well enough to support design for change. Forexample, input and output formats|for �les, reports, and terminal screens|change frequently, as user needs change and become better understood. Newsystem features are added, and old ones modi�ed or deleted. The underlyinghardware and software platform is subject to frequent change. Nowadays, hard-ware may be replaced every few years, and new operating system versions maywell arrive annually. Users and developers can often suggest additional changes.For example, payroll personnel know that tax calculations change frequently.The developer applies his or her knowledge of the technology; it is the devel-oper's job to know when a new operating system version is arriving and how itdi�ers from the current version.Of the seven sections just described, only the State machine section needsfurther discussion.5.2.2 The state machine sectionThe State machine section is divided into the following �ve subsections.1. Inputs. The inputs are de�ned, usually in terms of the input environmentvariables. In practice, inputs vary widely in form, including commandsfrom the keyboard, lines from a �le, or even entire �les or directories.



72 Chapter 5 REQUIREMENTS SPECIFICATIONOverview: overview of the system and the RS; notational conventionsEnvironment variables: declarations of variables modeling the environmentState machine: de�nition of the FSM on which the RS is basedInputs: inputs, in terms of the input environment variablesOutputs: outputs, in terms of the output environment variablesStates: declarations of variables storing the system stateInitial state: an initial value for each state variableTransitions and outputs: new state and outputs, for each state/input pairConstants: auxiliary constantsTypes: auxiliary typesFunctions: auxiliary functionsExpected changes: a list of changes likely after development is completeFigure 5.1 Requirements speci�cation sections2. Outputs. This section de�nes the outputs, usually in terms of the envi-ronment variables. As with the inputs, considerable variety is encounteredin practice. Both event and condition outputs (see Section 3.7) may bespeci�ed.3. State variables. The state space is de�ned in terms of state variables.Each variable is declared by providing its name and type.4. Initial state. The initial state is speci�ed by providing a value for eachstate variable.5. Transitions and outputs. This section speci�es the outputs and newstate corresponding to each input and old state. Exceptions are explicitlyde�ned, as conditions on the input and old state. Unless stated otherwise,when an exception occurs the transition is \none": no change in any statevariable.The RS document sections are summarized in Figure 5.1.5.3 BSHAM Requirements Speci�cationThe BSHAM RS describes the required behavior of the batch version of theSHAM system. The dataow diagram in Figure 5.2 shows the interaction be-tween the bsham program and its environment. A box indicates a data source
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srcfil -sourceline �� ��bsham -normaloutput line -exceptionmessage stdout

Figure 5.2 BSHAM dataow diagramor sink, an oval an executable program, and an arrow a discrete dataow. Thus,bsham reads source program lines from srcfil and writes normal output lines andexception messages to stdout.The BSHAM RS must specify, in detail, what normal and exceptional outputis produced for each possible srcfil. The RS focuses on the following areas:� Language syntax|source and object. What are the legal instructions andoperands, input format, and source-code-to-object-code mapping?� Registers and main memory. What are the word size and memory size?� Language semantics. What is the e�ect of each instruction on memory, theregisters, and the program output?� Exceptions. Under what conditions do exceptions occur? What actionmust be taken?Even though the service o�ered by the BSHAM system is simple, developing adetailed RS is challenging. The remainder of this section describes the key partsof the BSHAM RS; the full document may be found in Appendix A.5.3.1 RS section: OverviewThis section provides an overview of the BSHAM system, briey described inChapter 4. BSHAM runs on Sun/3 and Sun/4 workstations running SunOS.It is implemented in the C programming language and requires the UNIX/Cstandard libraries [55]. A simple naming convention is used throughout the RS,as follows. All identi�ers are shown in italics. The names of constants andabbreviations are all uppercase. The others are all lowercase, except for types,whose names end in `T '.5.3.2 RS section: Environment variablesAs suggested by Figure 5.2, there are two environment variables, declared asfollows.



74 Chapter 5 REQUIREMENTS SPECIFICATIONsrcfil : stringThe �le name passed on the command line.stdout : stringUNIX stdout.5.3.3 RS section: State machineBSHAM behavior is speci�ed using two FSMs: one for each of the load andexecution phases. The load-phase FSM reads the source program a line at atime, and loads the object-code version into BSHAM's main memory. Exceptionmessages are issued as needed. If the load phase is exception-free, then theexecution-phase FSM begins running. It continues until a HALT instruction isreached or an exception occurs.5.3.3.1 Command-line invocationBSHAM is invoked by typingbsham srcfilon the command line. Input is read from srcfil and output is written to stdout.The required response to command-line exceptions is speci�ed using a typeand a function, shown in Table 5.1. The type excidT introduces identi�ersfor command-line, load-phase, and execution-phase exceptions. The functionexcmsg speci�es the message text corresponding to each exception identi�er.Some messages include the illegal token (tok) or the location (loc) in the sourceor object code. As Table 5.1 shows, there are two command-line exceptions. Ifthe srcfil argument is not presentexcmsg(NOFILEXC; 0; "")is written to stdout. If srcfil is unreadable (or does not exist)excmsg(FILSYSEXC; 0; srcfil)is written to stdout. If there are any command-line exceptions, BSHAM execu-tion terminates.5.3.3.2 Load phaseThe speci�cation of the load phase depends on the constants and types shownin Figure 5.3. MAXLINLEN is the maximum length of a srcfil input line,MAXINT is the largest integer that can �t in a memory word, and MEMSIZis the total number of words of main memory. The set of legal memory addresses,and the set of legal register or memory values are speci�ed by shamaddrT andshamintegerT , respectively.
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Table 5.1 BSHAM exceptions|excidT and excmsgexcidT = fFILSYSEXC;NOFILEXC;BLANKLINEXC;MISSINGOPEXC;NOMEMEXC;OPFMTEXC; SOURCEEXC;ADDREXC;ARITHEXC;NOOPEXC;OBJECTEXCgexcmsg : excidT � integer � string! stringif id is then excmsg(id; loc; tok) isCommand-line messagesFILSYSEXC Command line error. Cannot open file: tokNOFILEXC Command line error. No file name specifiedLoad-phase messagesBLANKLINEXC Load exception at loc. Blank line illegalMISSINGOPEXC Load exception at loc. Operand missingNOMEMEXC Load exception at loc. Program too largeOPFMTEXC Load exception at loc. Illegal operand: tokSOURCEEXC Load exception at loc. Illegal instruction: tokExecution-phase messagesADDREXC Execution exception at loc. Illegal operand: tokARITHEXC Execution exception at loc. Arithmetic overflowNOOPEXC Execution exception at loc. Operand not accessibleOBJECTEXC Execution exception at loc. Illegal instruction: tok

ConstantsName ValueMAXLINLEN 100MAXINT 999MEMSIZ 100TypesshamaddrT = [0::MEMSIZ � 1]shamintegerT = [0::MAXINT ]Figure 5.3 Constants and types



76 Chapter 5 REQUIREMENTS SPECIFICATIONTable 5.2 Language syntax tableMnemonic I:source I:object Operand typeMemory accessLOAD load 0 shamaddrTSTORE store 1 shamaddrTArithmeticADD add 2 shamaddrTSUBTRACT sub 3 shamaddrTBranchBRANCH br 4 shamaddrTBRANCHZERO brz 5 shamaddrTBRANCHPOS brp 6 shamaddrTMiscellaneousLOADCON loadcon 7 shamintegerTPRINT print 8HALT halt 9The SHAM instructions and their arguments are shown in the LanguageSyntax Table (Table 5.2). The �rst column contains the instruction mnemonicused in this document. Column two contains the string that must be used insrcfil, and column three contains the object-code form generated by BSHAM.The last column shows the type of the instruction operand, if any. In this tableand throughout the RS, I:source and I:object refer to instruction I 's source-code string and object-code integer, respectively. Thus, SUBTRACT:source issub and SUBTRACT:object is 3; SUBTRACT takes a single operand of typeshamaddrT .At load time, the contents of srcfil are scanned a line at a time, converted toobject-code form, and loaded into main memory. Each line in srcfil must containexactly one BSHAM instruction. Input lines must not exceed MAXLINLENcharacters|BSHAM behavior is unpredictable on longer lines. On each inputline, tokens must be separated by one or more blanks. Object-code instructionsare loaded contiguously, beginning at address 0. Instructions without an operandoccupy a single memory location. Instructions with an operand occupy twoconsecutive memory locations: the instruction code in the �rst location and theoperand in the second.The load-phase FSM is shown in Figure 5.4. The Inputs and Outputsare self-explanatory. The States entry declares one variable; main memory isrepresented by an array ofMEMSIZ integers. Initially, all the memory elementscontain zero. The Transitions and outputs entry describes the processing ofthe nth line in srcfil. If the line is exception-free and mem is not full, then theobject code speci�ed by the Language Syntax Table (Table 5.2) is loaded.



5.3. BSHAM REQUIREMENTS SPECIFICATION 77InputsEach input is a line from srcfil, read in the order it appears in srcfil.OutputsNormal-case output and exception messages are written to stdout.Statesmem : sequence [0::MEMSIZ � 1] of shamintegerTInitial stateEvery element of mem is set to 0.Transitions and outputsFor line L, with line number n:if the Load-phase Exception Table speci�es an exception thenwrite the speci�ed message to stdoutelse if no previous line had an exception thenif there is room in mem thenload the object code form of L into memelse write excmsg(NOMEMEXC; n; "") to stdoutFigure 5.4 Load-phase FSMTable 5.3 illustrates normal-case behavior for the BSHAM load phase. The�rst column shows the source code for a trivial BSHAM program that computesand prints the value of 2 + 2. For each mem address in column two, columnthree contains the object-code value speci�ed by the Language Syntax Table.The remaining four columns will be discussed below under the execution phase.The load-phase exception behavior is speci�ed using a tabular conditionalrule, the excmsg function already described, and several new types. The typesare shown in Figure 5.5. The type sourceT enumerates the source code instruc-tions whose string values are shown in Table 5.2; op0sourceT and op1sourceTpartition opsourceT into the zero and one-operand instructions. In the Load-phase Exception Table (Table 5.4) the normal case and exception situations arede�ned by the conditions in column one. The message text is speci�ed in columntwo, where Normal case indicates that no exception is to be signaled.Table 5.5 shows a purposely awed program, and the speci�ed exceptionmessages. Consider the �rst line of Table 5.5 in terms of Table 5.4. Here:L = br 115; K = 2; T1 = br; and T2 = 115:We follow the conditional rule in the Load-phase Exception Table (Table 5.4),top-down and noting only the conditions that are true. We �nd thatK > 0; T1 2 op1sourceT; K > 1; T1 6= LOADCON:source; T2 62 shamaddrT



78 Chapter 5 REQUIREMENTS SPECIFICATIONTable 5.3 Example: the 2 + 2 programObject code `After' valuessrcfil Address Value pc acc mem[8] stdoutloadcon 2 0 7 2 2 0 hi1 2store 8 2 1 4 2 2 hi3 8add 8 4 2 6 4 2 hi5 8print 6 8 7 4 2 h4ihalt 7 9 7 4 2 h4isourceT = fLOAD:source; STORE:source; ADD:source; SUBTRACT:source;BRANCH:source;BRANCHZERO:source; BRANCHPOS:source;LOADCON:source; PRINT:source;HALT:sourcegop0sourceT = fHALT:source; PRINT:sourcegop1sourceT = sourceT � op0sourceTFigure 5.5 Types for classifying source code instructionsTable 5.4 Load-phase exception tableLet L be the current line, with line number n (numbered one-relative).Let T1; T2; : : : ; TK be the tokens in L.Condition MessageK = 0 (L is blank) excmsg(BLANKLINEXC;n; "")K > 0T1 2 op0sourceT Normal caseT1 2 op1sourceTK = 1 excmsg(MISSINGOPEXC;n; "")K > 1T1 = LOADCON:sourceT2 2 shamintegerT Normal caseT2 62 shamintegerT excmsg(OPFMTEXC;n; T2)T1 6= LOADCON:sourceT2 2 shamaddrT Normal caseT2 62 shamaddrT excmsg(OPFMTEXC;n; T2)T1 62 sourceT excmsg(SOURCEEXC;n; T1)



5.3. BSHAM REQUIREMENTS SPECIFICATION 79Table 5.5 Example: load-phase exceptionssrcfil Exception messagebr 115 Load exception at 1. Illegal operand: 115lode 7 Load exception at 2. Illegal instruction: lodeadd Load exception at 3. Operand missingadd 5 8Thus excmsg(OPFMTEXC; 1; 115) is indicated. Figure 5.1 shows that the mes-sage text is Load exception at 1. Illegal operand: 115.Note that the last instruction in Table 5.5 generates no exception message, eventhough ADD takes only one operand. While it might seem that a correct srcfilline must have exactly one or two tokens, careful examination of the Load-phaseException Table (Table 5.4) will show that srcfil lines of three, four, or moretokens may be correct; it is only the �rst one or two tokens that are signi�cant.This provides BSHAM with a crude commenting feature, as shown in the sampleprograms in the BSHAM RS.If there are any load-time exceptions, BSHAM execution terminates at theend of the load phase.5.3.3.3 Execution phaseThe execution phase is based on the Language Semantics Table (Table 5.6). Thistable speci�es the e�ect of each exception-free BSHAM instruction on the valuesof mem, acc, and pc. We illustrate its use with three examples.1. Suppose that pc = 5, acc = 10, mem[5] = 1, and mem[6] = 50. Becausepc = 5, the current instruction is mem[5] and its operand is mem[6].According to the Language Syntax Table (Table 5.2), mem[5] contains theobject-code value for a STORE instruction. Referring to the LanguageSemantics Table, we see the following multiple assignment statement forSTORE:object:mem[op]; pc := acc; (pc+ 2) modMEMSIZwhere op = mem[pc + 1]. Substituting the current values for op, pc, andacc, and simplifying, we getmem[50]; pc := 10; 7Thus, the STORE instruction at address 5 copies the accumulator to theaddress in mem[6]. All other mem locations and acc remain unchanged.



80 Chapter 5 REQUIREMENTS SPECIFICATION2. Suppose that pc = 5, acc = 10, mem[5] = 2, mem[6] = 50, and mem[50] =5. According to the Language Syntax Table, mem[5] is an ADD instruc-tion. The Language Semantics Table contains the following multiple as-signment statement for ADD:object:acc; pc := acc+mem[op]; (pc+ 2) modMEMSIZ:Substituting the current values for acc, op, and pc and simplifying, we getacc; pc := 15; 7:Thus, the ADD instruction at address 5 adds the value at address mem[6]to the accumulator. All mem values remain unchanged.3. Suppose that pc = 5, mem[5] = 5, and mem[6] = 5. According to Ta-ble 5.2, mem[5] is a BRANCHZERO instruction. The Language Seman-tics Table contains the following conditional multiple assignment statementfor BRANCHZERO:object:pc := (acc = 0) op j acc > 0) (pc+ 2) modMEMSIZ):Substituting the current values for op and pc, and simplifying, we getpc := (acc = 0) 5 j acc > 0) 7):Thus, if acc = 0 then the BRANCHZERO instruction will cause anin�nite loop; otherwise, it will have no e�ect beyond advancing the pc tothe next instruction.Given the Language Semantics Table, the execution-phase FSM is straight-forward (see Figure 5.6). There are no Inputs; only the mem values collectedduring the load phase are needed. The Outputs are integers generated byPRINT instructions and execution-phase exception messages. The States arethe same as for the load-phase FSM. The Initial state consists of the memvalues as they were when the load phase completed processing the last line insrcfil, and the initial value of acc and pc is 0. According to the Transitionsand outputs section, the FSM executes the instructions in mem[pc] until anexception occurs or mem[pc] = HALT:object. Note that, while the load phasemay generate multiple exception messages, the execution phase halts on the �rstexception.We illustrate the execution-phase FSM by again using Table 5.3. Columnsfour through seven show the values of pc, acc, mem[8], and stdout after theinstruction in each row has completed execution. The algorithm is simple:LOADCON puts 2 in the accumulator, which is then stored at address 8, addedto the accumulator, and printed. As column two shows, the object code instruc-tions occupy words 0{7, and address 8 is the �rst available location for data.Note that the HALT instruction has no e�ect on the state variables.



5.3. BSHAM REQUIREMENTS SPECIFICATION 81Table 5.6 Language semantics table (op = mem[pc+ 1])Instruction at mem[pc] E�ect on mem, acc, and pcMemory accessLOAD:object acc; pc := mem[op]; (pc+ 2) modMEMSIZSTORE:object mem[op]; pc := acc; (pc+ 2) modMEMSIZArithmeticADD:object acc; pc := acc+mem[op]; (pc+ 2) modMEMSIZSUBTRACT:object acc; pc := acc�mem[op]; (pc+ 2) modMEMSIZBranchBRANCH:object pc := opBRANCHZERO:object pc := (acc = 0) opj acc > 0) (pc+ 2) modMEMSIZ)BRANCHPOS:object pc := (acc > 0) opj acc = 0) (pc+ 2) modMEMSIZ)MiscellaneousLOADCON:object acc; pc := op; (pc+ 2) modMEMSIZPRINT:object pc := (pc+ 1) modMEMSIZHALT:object no change to acc; pc;memInputsNone.OutputsNormal-case output and exception messages are written to stdout.Statesmem : sequence [0::MEMSIZ � 1] of shamintegerTacc : shamintegerTpc : shamaddrTInitial statemem;acc; pc := (the �nal value from the load phase FSM); 0; 0Transitions and outputsfor the instruction beginning at mem[pc]:if the Execution-phase Exception Table speci�es an exception thenwrite the speci�ed message to stdoutterminate SHAMelse if mem[pc] = HALT:object thenterminate SHAMelse if mem[pc] = PRINT:object thenwrite to stdout : acc jj newlinemodify mem, acc, and pc as shown in the Language Semantics TableFigure 5.6 BSHAM execution-phase FSM



82 Chapter 5 REQUIREMENTS SPECIFICATIONobjectT = fLOAD:object; STORE:object; ADD:object; SUBTRACT:object;BRANCH:object;BRANCHZERO:object; BRANCHPOS:object;LOADCON:object; PRINT:object;HALT:objectgop0objectT = fHALT:object; PRINT:objectgop1objectT = objectT � op0objectTFigure 5.7 Types for classifying object code instructionsAs for the load phase, the execution-phase exception behavior is de�ned usinga tabular conditional rule, the excmsg function, and several types. The types areshown in Figure 5.7. The type objectT enumerates the object code instructionswhose integer values are shown in Table 5.2; op0objectT and op1objectT partitionopobjectT into the zero and one-operand instructions. In the Execution-phaseException Table (Table 5.7), the normal-case and exception situations are de-�ned by the conditions in column one. The message text is speci�ed in columntwo, where Normal case indicates that no exception is to be signaled. Theexecution-phase exceptions are subtle; this table deserves careful study. Wenext walk through the exceptions de�ned in the table. For convenience, leti = mem[pc] and op = mem[pc+ 1].1. ARITHEXC: signaled if i is an ADD (or SUBTRACT ) instruction andthe result of the addition (or subtraction) is not a legal integer. The resultis not representable in the accumulator.2. ADDREXC: signaled if i is a one-operand instruction requiring an ad-dress, and op is not a legal address. If the address is illegal, then theoperand cannot be retrieved from mem.3. NOOPEXC: signaled if i is a one-operand instruction in the last word ofmem. Here, op is needed but unde�ned.4. OBJECTEXC: signaled if i is not a legal instruction. In this case, noline in the Language Semantics Table applies.Table 5.8 explores a BSHAM program that generates ADDREXC. Columnone shows the source code, columns two and three the object code, and columnsfour, �ve, and six, the values of pc, acc, and mem[5] after each instruction hasbeen executed. The LOADCON instruction places 500 in the accumulator,which is then stored at address 5, the address of the BRANCH instruction'soperand. Because 500 is not a legal address, execution of the BRANCH in-struction generates ADDREXC. Referring to the Execution-phase ExceptionTable (Table 5.7), we �nd that the following conditions are true:i 2 op1objectT; pc 2 [0::MEMSIZ � 2];



5.3. BSHAM REQUIREMENTS SPECIFICATION 83i 6= LOADCON:object; op 62 shamaddrT:Here pc = 4, i = mem[pc] = 4, and op = mem[pc+ 1] = 500. It is interesting tonote that the BRANCH operand was legal at load time, but was overwrittenat execution time. This is an instance of code modi�cation, which is gener-ally considered bad programming practice and is prohibited by many operatingsystems. Table 5.7 Execution-phase exception tableLet i = mem[pc] and op = mem[pc+ 1]Condition Messagei 2 op0objectT Normal casei 2 op1objectTpc 2 [0::MEMSIZ � 2]i = LOADCON:object Normal casei 6= LOADCON:objectop 2 shamaddrTi = ADD:objectacc+mem[op] 2 shamintegerT Normal caseacc+mem[op] 62 shamintegerT excmsg(ARITHEXC;pc; "")i = SUBTRACT:objectacc�mem[op] 2 shamintegerT Normal caseacc�mem[op] 62 shamintegerT excmsg(ARITHEXC;pc; "")true Normal caseop 62 shamaddrT excmsg(ADDREXC;pc; op)pc =MEMSIZ � 1 excmsg(NOOPEXC; pc; "")i 62 objectT excmsg(OBJECTEXC;pc; i)Table 5.8 Example: execution-phase exceptionSource Object code `After' valuescode Address Value pc acc mem[5]loadcon 500 0 7 2 500 01 500store 5 2 1 4 500 5003 5br 0 4 4 4 500 5005 0



84 Chapter 5 REQUIREMENTS SPECIFICATIONInput/output format� Command-line parameters besides srcfil.� Di�erent input format: new tokens, delimiters, and instruction formats.� Handle overlength lines robustly.Abstract machine� Change in word size, number of words in main memory.� New or extended data types, especially signed integers.� More registers, e.g., index registers.� More or di�erent SHAM instructions.� More addressing modes.� Symbolic data and branch addresses.Platform� Di�erent operating system: other UNIX platforms or MS-DOS.Exception handling� Limits on the number of exceptions reported or instructions executed.� Changes in the conditions de�ning exceptions and in the message text.Figure 5.8 BSHAM expected changes5.3.4 RS section: Expected changesFigure 5.8 shows the expected changes to the BSHAM system. Changes arefrequently requested to input and output formats. Here the command-line formatand the srcfil format, as well as the handling of overlength lines, are subject tochange. The abstract machine is the core of the BSHAM system; the changeslisted describe desirable features found in other assemblers. Platform changesare inevitable within a few years of system delivery. We will surely \port"BSHAM to other UNIX platforms and possibly to MS-DOS. Finally, system usewill suggest improvements to exception handling.5.3.5 SummaryThe BSHAM system o�ers a simple service. Nonetheless, developing a completeRS is challenging. While the RS contains many details, the document structure issimple and easy to learn. The document is driven by two FSMs. The load-phaseFSM is speci�ed in a half-page (Figure 5.4). This �gure is short because mostof the details are elsewhere: in the Language Syntax Table (Table 5.2) and theLoad-phase Exception Table (Table 5.4). The Constants, Types, and Func-tions sections are also used. Similarly, the execution-phase FSM (Figure 5.6)is short and depends upon the Language Semantics Table (Table 5.6) and theExecution-phase Exception Table (Table 5.7).
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srcfil -sourceline �� ��isham -load phaseexc. msg. stdout

�������STEP orEXITstdin
@@@@@@Rmem,acc,pc@@@@@@Rexec. phaseexc. msg.scnFigure 5.9 ISHAM dataow diagram5.4 ISHAM Requirements Speci�cationThe ISHAM RS describes the behavior of the interactive version of the SHAMsystem. The dataow diagram in Figure 5.9 sketches the interface between theisham program and its environment. As with BSHAM, ISHAM reads sourceprogram lines from srcfil and writes load-phase exception messages to stdout.However, the ISHAM execution phase is di�erent. The user has limited controlover execution through STEP and EXIT commands entered through stdin.The values in main memory, the accumulator, and the program counter aredisplayed on scn, the terminal screen. Similarly, the execution-phase exceptionmessages are displayed on scn.The ISHAM RS must specify, in detail, the scn contents corresponding toeach possible srcfil and sequence of commands from stdin. The RS focuses onthe following areas.� Keyboard input. A new input variable, stdin, is introduced to model key-board input.� Formatted screen. A new output variable, scn, is introduced to modelscreen output. Considerable e�ort is invested to precisely specify the screenformat.� Execution phase. The BSHAM execution-phase FSM is replaced by onethat reads commands from stdin and updates scn.5.4.1 RS section: OverviewThis section speci�es the behavior of ISHAM, the interactive version of SHAM.The ISHAM and BSHAM load phases are identical, as are the language syntax



86 Chapter 5 REQUIREMENTS SPECIFICATIONand semantics, but the execution phases di�er in two ways. In ISHAM:1. Object code execution is \single-stepped" under user control.2. Output is through a formatted screen with main memory and the registersdisplayed and updated after each instruction execution.Because ISHAM and BSHAM have much in common, this document is writ-ten as an addendum to the BSHAM RS, describing only the di�erences betweenISHAM and BSHAM. In summary, these are (1) environment variables to modelkeyboard input and formatted screen output, (2) a detailed format for preciselydescribing screen updates, (3) a new execution-phase FSM, and (4) several newexpected changes.5.4.2 RS section: Environment variablesTwo new environment variables are needed:stdin : stringUNIX standard inputscn : sequence [24][80] of charscn[r][c] is the character at screen row r and column c,with numbering zero-relative and beginning at the upper-left corner.As shown in Figure 5.10, we divide scn into screen �elds that are either �xedor varying. The �xed �elds are written when ISHAM execution begins andremain unchanged while ISHAM is running. The varying �elds may changerepeatedly during ISHAM execution. Each varying �eld has an identi�er: MEM ,ACC, PC, PRT , or MSG. The extent of each varying �eld on the screen is thecharacter positions occupied by the �eld identi�er, and the trailing -s if present.When a MEM , ACC, PC, or PRT value is shorter than the extent shown,it is right-justi�ed and padded left with blanks; MSG values are left-justi�edand padded right with blanks. The MEM �eld occurs 100 times on the screen,and a particular MEM occurrence is indicated by row and column subscripts,numbered zero-relative, top-down, and left-to-right. For example, MEM [9; 0] isthe leftmost and lowest occurrence.5.4.3 RS section: State machine5.4.3.1 Command-line invocationISHAM is invoked by typingisham srcfilon the command line. Input is read from srcfil and stdin, and output is writtento stdout and scn.



5.4. ISHAM REQUIREMENTS SPECIFICATION 87012345678901234567890123456789012345678901234567890123456789012345678901************************************************************************SHAM0 1 2 3 4 5 6 7 8 9Main 0 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEMmemory: 10 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM20 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM30 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM40 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM50 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM60 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM70 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM80 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM90 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEMProgram counter: PCAccumulator: ACCLast value printed: PRTEnter command: 's' to single step; 'e' to exitMessage: MSG------------------------------------------------------------************************************************************************Figure 5.10 Screen formatIf the srcfil argument is not present,excmsg(NOFILEXC; 0; "")is written to stdout. If srcfil is unreadable (or does not exist),excmsg(FILSYSEXC; 0; srcfil)is written to stdout. If there are any command-line exceptions, ISHAM executionterminates.5.4.3.2 Load phaseUnchanged from the BSHAM Requirements Speci�cation.



88 Chapter 5 REQUIREMENTS SPECIFICATION5.4.3.3 Execution phaseThe execution-phase FSM is shown in Figure 5.11. Each input is a keystrokefrom stdin; each output is an update to scn. As with BSHAM, the initial statefor the execution phase consists of the �nal values stored in mem after the loadphase and 0 for acc and pc.The Transitions and outputs section is more challenging. Briey, eachSTEP command causes an update to the state, and a corresponding update tothe scn �elds. Only the EXIT command causes ISHAM to terminate. Exam-ining this section in more detail, we �nd three cases, based on the value of c:(1) EXIT , (2) STEP , and (3) other. In case (1) we terminate ISHAM, and incase (3) we display an exception message, but do not terminate. Case (2) hasthree subcases: (a) exception, (b) HALT , and (c) other. In cases (a) and (b) wedisplay a message. In case (c), we clear the message �eld, update the PRT �eld(PRINT instruction only), and update the FSM state.The primary e�ect on the screen is speci�ed separately, by stating a relation-ship between scn and the FSM state that the ISHAM system must maintain.Item (1) requires that the �xed �elds be displayed. Item (2) speci�es the re-quired correspondence between mem, acc, and pc, and MEM , ACC, and PC.Item (3) requires highlighting of the current instruction. In items (2) and (3),the subscript expressions compute the familiar mapping between linear memoryaddresses, and row and column indexes in a two-dimensional array overlayingthe linear memory.5.4.4 RS section: Expected changesThe expected changes are shown in Figure 5.12. Screen format changes are com-mon, motivating item (1). With MEMSIZ = 100, mem is small. However, if itis substantially enlarged, then some form of scrolling will be required, motivat-ing item (2). Finally, single-stepping through a long-running program is tedious;other forms of execution will be requested.5.4.5 ExampleTo illustrate the ISHAM execution behavior, Figure 5.13 shows an scn valuecorresponding to the program in Figure 5.3. The scn value shown occurs justbefore the HALT instruction is executed or, equivalently, just after four STEPcommands have been executed. During actual execution, the `9' in positionMEM [0; 7] would be displayed in inverse video.5.4.6 SummaryThe ISHAM RS has the same structure as the BSHAM RS. The primary di�er-ences are the introduction of the scn environment variable|to precisely specifyscreen �elds|and the new execution-phase FSM|to specify screen updates.



5.4. ISHAM REQUIREMENTS SPECIFICATION 89InputsKeystrokes from stdin.OutputsAll outputs are to scn and its �elds.StatesSame as for the load phase FSM.Initial statemem;acc; pc := (the �nal value from the load phase FSM); 0; 0Transitions and outputsFor each character, c, from stdinif c = EXIT thenclear scnhalt ISHAM executionelse if c = STEP thenif the BSHAM Execution-phase Exception Table speci�esan exception for mem[pc] thenMSG := the speci�ed messageelse if mem[pc] = HALT:object thenMSG := HALTMSGelse MSG := ""if mem[pc] = PRINT:object thenPRT := accmodify mem, acc, pc, as per the BSHAM Language Semantics Tableelse MSG := CMDERRMSGNotes on screen updating:� Initially and between transitions, ensure that:1. The �xed �elds shown in the ISHAM screen format are displayed.2. MEM , PC, and ACC are such that(8r; c 2 [0::9])(MEM [r; c] = mem[10� r + c]) ^ ACC = acc ^ PC = pc3. MEM [pc=10; pc mod 10] is displayed in inverse video.� Initially the MSG and PRT �elds are blankFigure 5.11 ISHAM execution-phase FSM1. The �eld positions and the contents of the �xed �elds will change.2. MEMSIZ will exceed 100 and vertical scrolling will be supported.3. Di�erent forms of stepping through the instructions will be supported, such asexecuting a speci�ed number of instructions or executing until a speci�ed in-struction is reached.Figure 5.12 ISHAM expected changes



90 Chapter 5 REQUIREMENTS SPECIFICATION012345678901234567890123456789012345678901234567890123456789012345678901************************************************************************SHAM0 1 2 3 4 5 6 7 8 9Main 0 7 2 1 8 2 8 8 9 2 0memory: 10 0 0 0 0 0 0 0 0 0 020 0 0 0 0 0 0 0 0 0 030 0 0 0 0 0 0 0 0 0 040 0 0 0 0 0 0 0 0 0 050 0 0 0 0 0 0 0 0 0 060 0 0 0 0 0 0 0 0 0 070 0 0 0 0 0 0 0 0 0 080 0 0 0 0 0 0 0 0 0 090 0 0 0 0 0 0 0 0 0 0Program counter: 7Accumulator: 4Last value printed: 4Enter command: "s" to single step; "e" to exitMessage:************************************************************************Figure 5.13 Example: scn contents for 2 + 2 program5.5 Veri�cation5.5.1 Veri�cation proceduresAfter an RS has been written, it must be veri�ed. As described in Section 2.4,veri�cation can be accomplished using inspection and testing. However, our RSsare not executable and therefore cannot be tested. Figure 5.14 shows the RSinspection criteria. We review the \additional criteria" list from an inspectionviewpoint.1. Well formed. The inspectors check for violations of the work productde�nition, as described in Section 5.2. For example, is the Expectedchanges section present? Is every constant that is used also de�ned?2. Precise and comprehensible. Here the inspectors serve as representativesof the intended audience. While it is sometimes di�cult to inspect for



5.5. VERIFICATION 91� Audience. System users, system developers.� Prerequisites. A reading knowledge of the RS format and notations.� Purpose. Describe the characteristics of the system required by the user: nomore, no less.� Additional criteria.1. Well formed. The speci�cation is well formed with respect to the formatdescribed in Section 5.2.2. Precise and comprehensible. The speci�cation can be read and understoodby the intended audience.3. Complete. In every situation, either an assumption is violated, an exceptionis generated, or the normal case is well de�ned.4. Feasible. The system can be implemented and tested a�ordably.Figure 5.14 Requirements speci�cation criteriathese criteria, disagreement by the inspectors regarding the meaning ofthe document is strong evidence that it is not precise and comprehensible.3. Complete. The inspection process is well suited for checking adherence tothis criterion, especially if the RS has been designed so that the complete-ness argument is straightforward to construct and comprehend.4. Feasible. Accurately estimating the cost of system development is di�cult.However, a good RS can help tremendously. Sketches of the design andimplementation may also be required.5.5.2 Example: completeness of BSHAM execution phaseWe illustrate the use of the RS criteria by presenting a completeness argumentfor the BSHAM execution phase. We make no assumptions about the mem,acc, and pc values passed on from the load phase. The exceptions are de�ned inthe Execution-phase Exception Table (Table 5.7) and the normal case is de�nedby the Language Semantics Table (Table 5.6). The completeness argument isdriven by Table 5.7 and is broken into two steps:1. Conditions cover all situations. Show that the conditions in column onecover every situation.2. Actions well de�ned. Show that each action in column two is well de�ned.For the exception entries, we need only show that the excmsg call is de�nedin Table 5.1. For the normal case entries, we must show that the assignmentstatements in Table 5.6 are well de�ned.



92 Chapter 5 REQUIREMENTS SPECIFICATIONWe begin by noting that pc 2 [0::MEMSIZ � 1] is always true, because pc isinitially 0 (see Figure 5.6) and is incremented moduloMEMSIZ (see Table 5.6).5.5.2.1 Conditions cover all situationsWe must show that, at each indentation level, every situation is handled.� From the de�nitions in Figure 5.7, it is clear that exactly one of i 2op0objectT , i 2 op1objectT , and i 62 objectT must hold.� Under i 2 op1objectT : because pc 2 [0::MEMSIZ � 1] holds, one ofpc 2 [0::MEMSIZ � 2] and pc =MEMSIZ � 1 must hold as well.� Under pc 2 [0::MEMSIZ � 2]: obviously, i is either LOADCON:object orit is not.� Under i 6= LOADCON:object: We know that pc 2 [0::MEMSIZ � 2] atthis point; therefore, op is de�ned. Clearly, either op 2 shamaddrT orop 62 shamaddrT must hold.� Under op 2 shamaddrT : here completeness is immediate because of thetrue entry for the third case.� Under i = ADD:object: obviously, acc+mem[op] is either in shamintegerTor it is not.� Under i = SUBTRACT:object: similarly, acc � mem[op] is either inshamintegerT or it is not.5.5.2.2 Actions well de�nedExamination of Table 5.1 shows that the exception entries are de�ned. The �veNormal case entries are more challenging. We discuss them in the order theyappear in the table.1. Because i 2 op0objectT , i is either a PRINT or a HALT instruction. AsTable 5.6 shows, the actions associated with these instructions are alwaysde�ned.2. Because acc and op are both of type shamintegerT , the LOADCON actionis de�ned.3. For this case and the next two cases, we know that i is a one-operandinstruction other than LOADCON and op is a legal address. Therefore, ifacc+mem[op] is in range then the ADD entry in Table 5.6 is de�ned.4. Similarly, if acc � mem[op] is in range then the SUBTRACT entry inTable 5.6 is de�ned.



5.7. BIBLIOGRAPHIC NOTES 935. For each of the remaining instructions|LOAD, STORE, and the branchinstructions|the Table 5.6 entry is de�ned as long as op 2 shamaddrT isa legal address.That concludes the completeness argument for the execution phase. No so-phisticated mathematics is required: just careful case analysis of a documentdesigned to support case analysis.5.6 SummaryThe goal of the RS is to specify the required behavior of a software systemprecisely. The RS provides a written record of the commitment the developershave made to the users. We favor a systematic approach with standardizeddocument sections, notations, and naming conventions. A standardized approachtakes extra e�ort initially, but over time it pays o�.In this chapter, we examine the BSHAM and ISHAM RSs in detail. Thesedocuments show how to describe required behavior precisely and compactly longbefore implementation. While RSs for industrial systems are far larger and morecomplex, the same techniques apply: FSMs, tables, and functions. An RS is areference document; frequently less than half the space is occupied by proseparagraphs. There is heavy use of tables and formulas, though no single tableor formula is particularly complex. While an RS does not make easy reading, itprovides precise answers to important questions about what must be built. Alsoimportant, it provides a framework in which to ask precise questions.The BSHAM and ISHAM RSs are precise and detailed enough to supportuseful veri�cation for properties such as completeness. It is critical that the RSbe developed with veri�cation in mind. Much of the power of a good RS is shownin the chapters that follow; we rely on the RS in every development phase.5.7 Bibliographic NotesOur approach to requirements speci�cation has been inuenced by the SoftwareCost Reduction approach [56, 57] in which precise speci�cations are achieved byrelying on tables rather than diagrams. Many other approaches have been pro-posed. Alford describes the Requirements Statement Language [58] and Teichrowpresents the Problem Statement Language [10]. DeMarco [23] and Yourdon andConstantine [24] apply Structured Analysis and Structured Design (SA/SD) torequirements speci�cation. Ward and Mellor show how to adapt SA/SD to real-time systems [25]. With statecharts, state machine speci�cations are representedin a graphical, executable form [59]. Dreger uses function points to estimatedevelopment cost based on a requirements speci�cation [60]. Davis provides asurvey of requirements speci�cation methods [61].





Chapter 6Module DecompositionDivide et impera.6.1 IntroductionIn multi-version/multi-person programming, the systems are too large and com-plex to be developed \all at once." Instead, the development task must bedivided into modules: programming work assignments. For a given RS, thereare a large number of possible module decompositions, some good and some bad.In a good decomposition, the modules are of manageable size and complexity,and are independent. Ideally, each module would be completely independentof the others. However, complete independence is rarely achievable; instead in-terdependencies are carefully monitored and minimized. A good decompositionshould provide the following bene�ts:� Shorter development time. Programmers working on di�erent modules canwork in parallel and with relatively little interpersonal communication.In a decomposition with undisciplined dependencies, such parallel work isinfeasible.� Improved veri�cation. Veri�cation is simpler and more reliable becausethe veri�cation of each module is largely independent of the other mod-ules. Unnecessary dependencies can dramatically increase the di�culty ofveri�cation and the likelihood of veri�cation errors.� Reduced maintenance cost. Maintenance costs can be reduced by encapsu-lating each expected change in a separate module. Careful use of encapsu-lation can signi�cantly reduce the ripple e�ect : the tendency of a changein module M1 to cause a change in module M2, which causes a change inM3, and so on. When encapsulation is ignored, the ripple e�ect can bedisastrous. 95



96 Chapter 6 MODULE DECOMPOSITIONIn today's competitive environment, reduced time to market, improved reliabil-ity, and lower maintenance costs are all highly desirable.Below we describe information hiding|the module decomposition techniqueused in SHAM|and the format of the Module Guide (MG), the module decom-position work product. We review the SHAM decomposition and MG in detail,and close by describing the MG veri�cation procedure. The complete MG maybe found in Appendix B.6.2 Information Hiding6.2.1 The information-hiding techniqueInformation hiding is a module decomposition technique well suited to large,complex systems. Information hiding is carried out in three steps.1. Identify the expected changes. Record the characteristics of the systemthat are likely to change. Consider the behavior seen by the end user, theinternal data structures and algorithms, and the underlying hardware andoperating system.2. Encapsulate each expected change. Introduce one module for each change.We say that the module hides the change, and we call the change themodule secret.3. Design the module interfaces. For each module, design an interface whichwill not change even if there is a change in the module secret.Steps 1 and 2 are the focus of this chapter; step 3 is covered in Chapter 7.We divide the modules in an information-hiding decomposition into threegroups.� Behavior-hiding modules hide the behavior observable to the end user, asdescribed in the RS. Typical secrets include input formats, screen formats,and the text of messages.� Software decision{hiding modules hide the internal data structures andalgorithms. For example, a set of strings may be stored in an array, alinked list, or a tree, and may be accessed by linear search or hashing.� Machine-hiding modules hide the characteristics of the underlying ma-chine: the hardware machine or the \virtual machine" provided by theoperating system and utilities. Typical secrets are device register formatsand the parameter formats for operating system procedure calls.Grouping modules by secret type is useful in two ways: it provides insight tothe designers during module decomposition, and it guides the maintainer whensearching for modules a�ected by a change.



6.2. INFORMATION HIDING 97While the information-hiding technique is simple, applying it requires deepthinking. There are limits to what can be hidden; information hiding sometimesconicts with practicality and must be applied with common sense.6.2.2 An RS-driven approach to information hidingIn combination, the RS work product and the information-hiding technique sup-port a systematic module decomposition approach. The focus is on the RSvariables; for each kind of variable|input, output, and state|a small set ofcandidate modules is suggested, as follows:� Input variables. For each input variable, two modules are suggested. Amachine-hiding module gets input from a hardware device or operatingsystem service and hides the changeable characteristics of that device orservice. A behavior-hiding module extracts the relevant information fromthe input provided by the machine-hiding module and hides the inputformat. We call this a behavior-hiding input-format (or just input-format)module.� Output variables. There are three modules corresponding to each out-put variable: a machine-hiding module, a behavior-hiding output-format(or just output-format) module, and an additional behavior-hiding mod-ule. The machine-hiding module writes output using a hardware deviceor an operating system service and hides the changeable characteristicsof that device or service. The output-format module formats informationto be written to the machine-hiding module and hides the output format.The additional behavior-hiding module determines what values should bepassed to the output-format module and hides the RS rules that specifythose values. We call this a behavior-hiding output-driver (or just output-driver) module.� State variables. For each state variable, two modules are suggested. Asoftware decision{hiding module provides operations on the state variableand hides the implementation data structures and algorithms. A behavior-hiding module uses the software decision{hiding module to control the statevariable value and hides the RS rules that specify state values. We call thisa behavior-hiding state-driver (or just state-driver) module.While the approach just described provides a useful framework for moduledecomposition, the designer's judgment is still critical. Sometimes suggestedmodules will be rejected as unnecessary; at other times additional modules willbe needed. Frequently, there will be a single module to handle a group of relatedvariables, instead of one module for each variable. Almost always there will beimportant considerations other than information hiding.



98 Chapter 6 MODULE DECOMPOSITIONModule summaryLong name: descriptive nameShort name: short mnemonic for �le namesPre�x : short string prepended to exported C identi�ersModule service and secretService: brief description of features providedSecret : likely change encapsulatedFigure 6.1 Module guide sections6.3 Work Product De�nitionThe module decomposition is described in the Module Guide (MG), consistingof two sections. The Module summary section lists the modules, groupedby secret type. For each module, three names are given. The long name isdescriptive and consists of one or more English words. The short name is amnemonic identi�er and is used for �le names. The pre�x is a short string;it is prepended to every C identi�er exported by the module to avoid nameconicts with other modules. For example, if this naming scheme is applied tothe stack module of Figure 2.1, the long name might be \Pushdown Stack,"the short name stack, and the pre�x ps . The stack directory would containmost of the �les for this module, such as stack.c|the Implementation|andstack.tplan|the Test Plan. The initialization access routine would be calledps s init; other modules will also have initialization routines, but with di�erentpre�xes.The second section, the Module service and secret section, contains anentry for each module, briey describing the service o�ered and the likely changeencapsulated by the module. The detailed service speci�cation is contained inthe Interface Speci�cation (see Chapter 7).The MG document sections are summarized in Figure 6.1.6.4 SHAM Module Guide6.4.1 BSHAM module decompositionBefore applying the procedure of Section 6.2, we make several decompositiondecisions not directly motivated by information hiding. We introduce the Load(load) and Execute (exec) modules, which model the RS load and execute phases.A simple coordinator module, Sham (sham), is also introduced to initiate theload and execution phases. While the BSHAM and ISHAM execution phasesare di�erent, a single exec module will handle both versions. This initial decom-position follows the RS closely, simplifying veri�cation. Note that the existence



6.4. SHAM MODULE GUIDE 99of the load and exec modules is not mandated by the RS; the RS constrains thesystem behavior but not its internal structure.We now continue the decomposition, by considering the candidate modulessuggested for each of the RS variables. As described in Section 5.3, there is oneinput variable (srcfil), one output variable (stdout), and three state variables(mem, acc, and pc).� Input variable: srcfil. A machine-hiding and an input-format module aresuggested. For the machine-hiding module, we use stdio, a collection ofC functions provided with nearly all C compilers. Following the classicaldivision into lexical and syntactic analysis, we have two input-format mod-ules. The Token (token) module extracts tokens from a string and givesaccess to the token type and string value of each token. The module secretis the set of rules governing token types and separators. The Load (load)module performs syntactic analysis on the extracted tokens; load hides thevalues and conditions in the Language Syntax Table and the Load-phaseException Table.We review these modules from the perspective of likely changes. The stdiomodule must change if the underlying �le input/output does. While wedo not maintain stdio, we do rely on its interface being stable. The tokenmodule changes if, for example, the tab character is accepted in SHAMprograms or if signed integers are permitted. Support for symbolic ad-dresses in SHAM source programs will require changes to load, though notnecessarily to token.� Output variable: stdout. For output variables, a machine-hiding, anoutput-format, and an output-driver module are suggested. Once again,the machine-hiding module is stdio. Because the output format is so sim-ple, no output-format module is needed. There are two output-drivermodules. The load module generates exception messages and hides theexception rules and the exception message formats speci�ed in the Load-phase Exception Table and the RS function excmsg. The exec modulewrites normal-case output and exception messages. exec hides only theway it uses other modules to implement the execution phase; the languagesemantics are hidden by a state-driver module, described next.� State variables: mem, acc, pc. For a state variable, a software decision{hiding and a state-driver module are suggested. The software decision{hiding module Abstract Machine (absmach) maintains the values of mem,acc, and pc. In the simplest design, mem will be implemented as an in-teger array, and acc and pc as integer variables. Because SHAM is a toylanguage and its main memory is small, this design will probably be usedinitially and never changed. Thus, the main motivation for encapsulatingthese variables is not maintainability, but access control; we can detect andsignal, for example, an attempt to retrieve the mem value at address �10.



100 Chapter 6 MODULE DECOMPOSITIONThere are two state driver modules; load provides the initial values for thestate variables and absmach changes them repeatedly during the execu-tion phase. Considering some likely RS changes and their consequences,we see that load will change if object code instructions are always storedon even-word boundaries and absmach will change if index registers areadded to the SHAM instruction set.The module services and secrets for the load, token, exec, and absmach areshown in Figure 6.2.The sham Module� Service. Uses the other modules to provide the load-and-go assembler speci�edin the SHAM Requirements Speci�cation.� Secret. The way in which the other modules are used and the handling ofcommand-line parameters.The load Module� Service. Performs the load phase. Issues exception messages for incorrect inputand, for correct input, stores the resulting object code in the absmach module.� Secret. The details of the load-phase user interface, including the source lan-guage concrete syntax and the exception messages.The token Module� Service. Extracts tokens from a string supplied by the user. Tokens are retrievedsequentially, in the order they occur in the user's string. The user is given accessto the token value (a string) and the token type (integer, identi�er, or unknown).� Secret. The rules governing token types and token separators.The absmach Module� Service. Implements the mem, acc, and pc state variables, as well as the Lan-guage Semantics Table from the SHAM Requirements Speci�cation. Followingeach instruction execution, the user is given a status indicator and access to thestate variables.� Secret. The SHAM language semantics, including the execution-phase excep-tions.The exec Module� Service. Performs the execution phase, executing the program stored inabsmach and managing the run-time user interface, batch or interactive.� Secret. The way in which the other modules are used, and the format andcontent of the exception messages.Figure 6.2 SHAM module guide|BSHAM module service and secretWe summarize the BSHAM module decomposition from the perspective pro-vided by the dataow diagram in Figure 6.3. The load module reads lines from



6.4. SHAM MODULE GUIDE 101
srcfil -sourceline �� ��load -objectcode6sourceline

@@@@@@@@Rexceptionmessage
�� ��token? token �� ��absmach -mem,acc,pc -status �� ��exec��������	normaloutput line ��������	 exceptionmessagestdoutFigure 6.3 BSHAM dataow diagramsrcfil and passes them to token to be split into tokens and classi�ed. For a cor-rect instruction, the object code is loaded into absmach; otherwise, an exceptionmessage is written to stdout. For a correct source program, instruction executionis carried out by absmach with exec monitoring mem, acc, pc, and status values.Output from PRINT instructions and exception messages are written to stdoutby exec.6.4.2 ISHAM module decompositionTo handle the terminal screen and keyboard, ISHAM adds four modules to theBSHAM decomposition.� Input variable: stdin. A machine-hiding and an input-format module aresuggested. The machine-hiding module Keyboard Input (keybdin) pro-vides character|not line|oriented input; ISHAM must respond to thesingle-character STEP and EXIT commands without waiting for a car-riage return. No input-format module is required because the input formatis so simple.� Output variable: scn. A machine-hiding, an output-format, and an output-driver module are suggested. The machine-hiding module Screen String(scnstr) provides access to scn, the terminal screen. A string may be writ-ten anywhere on scn and may be highlighted. To reduce the screen update



102 Chapter 6 MODULE DECOMPOSITIONThe keybdin Module� Service. Provides keyboard input, one character at a time, without echoing orwaiting for carriage return.� Secret. The UNIX system services used to accomplish this task.The scnstr Module� Service. Provides write access to the terminal screen. A string may be writtento any position on the screen, the cursor may be moved to any position on thescreen, and any screen position may be highlighted. To allow for e�cient screencontrol, scnstr calls are bu�ered. An \apply changes to screen" access routine isprovided; scnstr calls have no visible e�ect on the screen until the apply routineis invoked.� Secret. The UNIX system services used to accomplish this task.The scngeom Module� Service. Provides the length, row, and column position for each screen �eld, asper the screen format in the SHAM Requirements Speci�cation.� Secret. Hides, until execution time, the length, row, and column values.The scndr Module� Service. Updates the terminal screen, using the values stored by absmach andaccording to the screen format described in the ISHAM Requirements Speci�ca-tion.� Secret. The means used to accomplish screen updates.Figure 6.4 SHAM module guide|ISHAM module service and secrettime|one place in SHAM where performance is critical|a bu�ering facil-ity is supported; the e�ect of several updates may be delayed and appliedall at once. scnstr hides the system services used for scn access, the UNIXcurses package in this case. The scn format shown in Figure 5.10 speci�esthe row and column position, and the length of each �eld on scn: over 300values in all. The output-format module Screen Geometry (scngeom) pro-vides these values; scngeom hides, until run time, the �eld positions andlengths. The output-driver module Screen Driver (scndr) uses scngeomand scnstr to maintain consistency between scn and absmach. scndr hidesthe way it uses scngeom, scnstr, and absmach, and even the fact that ituses scngeom and scnstr.We consider one likely change for each of the three modules; scnstr will change ifthe relevant curses functions do, scngeom will change if the ACC �eld is shiftedleft one column, and scndr will change if scrolling of MEM is supported. TheMG sections for keybdin, scnstr, scngeom, and scndr are shown in Figure 6.4.We summarize the ISHAM decomposition using the dataow diagram inFigure 6.5. The load phase is unchanged from BSHAM. In the execution phase,
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srcfil -sourceline �� ��load -objectcode6sourceline
?exc. msg.

�� ��scndr6�eldid. -position,value
�� ��scngeom?position �� ��scnstr6

scn

stdout

�� ��token? token �� ��absmach6mem,acc,pc -status �� ��exec�� ��keybdin6keystrokestdin -Figure 6.5 ISHAM dataow diagramexec uses keybdin to retrieve commands from stdin. After each STEP com-mand, absmach modi�es mem, acc, and pc, and scndr updates scn. For eachscn �eld, scndr passes its identi�er to scngeom, which supplies the row and col-umn position of the �eld on scn. scndr passes this position and the mem, acc, orpc value to scnstr to be displayed on scn. The unlabeled arrow from scnstr toscn indicates that information ows from scnstr to scn but says nothing aboutits format. The arrow from stdin to keybdin should be interpreted similarly.6.4.3 Module summaryThe module summary in Figure 6.6 shows the module long name, short name,and pre�x for each module, grouped by secret type. The SHAM MG consists ofthe contents of Figures 6.2, 6.4, and 6.6.6.5 Veri�cationAfter an MG has been written, it must be veri�ed. Because the MG is notexecutable it cannot be tested; veri�cation must be accomplished through in-spection. Figure 6.7 shows the inspection criteria for an MG.



104 Chapter 6 MODULE DECOMPOSITIONformat: long name (short name, pre�x)SHAM modulesBehavior hidingLoad (load, ld )Token (token, tk )Abstract Machine (absmach, am )Screen Driver (scndr, sd )Screen Geometry (scngeom, sg )Software decision hidingSHAM Coordinator (sham)Execute (exec, ex )Machine hidingKeyboard Input (keybdin, ki )Screen String (scnstr, ss )UNIX modulesctype, curses, stdio, string, strtodFigure 6.6 SHAM module guide|module summaryWe review the \additional criteria" list from an inspection viewpoint.1. Well formed. Violations of this criterion are easily revealed by a line byline review.2. Feasible. It is di�cult to inspect for feasibility. In some cases, the only wayto clearly establish feasibility is to fully implement the system. Unfortu-nately, that is a costly approach to revealing decomposition errors. Instead,later development work products can be sketched with just enough detail tojudge the feasibility of the decomposition. Module Interface Speci�cationsketches are especially useful, typically including just the access routinenames, parameters, and return values.3. Flexible. Again, exibility is di�cult to establish by inspection, and designsketches are often necessary. Not surprisingly, the focus is likely changes.For each module, suppose that the likely change does occur and show thatthe module encapsulates that change.We illustrate the use of the exibility criterion by showing that scn �eldlocations can be encapsulated by scngeom. A Module Interface Speci�cationsketch is appropriate here. Suppose that scngeom provides the access routinesg row and g col, where g row(x) and g col(x) return the scn row and columnposition of �eld x. Because the code of the scngeom user will contain calls tog row and g col, rather than hard-coded row and column numbers, scngeom



6.7. BIBLIOGRAPHIC NOTES 105� Audience. Software designers and maintainers.� Prerequisites. An understanding of the RS and of information hiding.� Purpose. Describe and motivate the decomposition of the system into modules.� Additional criteria.1. Well formed. The speci�cation follows the format described in Section 6.3.2. Feasible. Following this decomposition, a system can be implemented thatis correct, and whose cost and performance are acceptable.3. Flexible. If a likely change is requested, the cost of the resulting modi�cationwill be reasonable.Figure 6.7 Module guide criteriacorrectly encapsulates �eld locations. For example, the RS screen format (seeFigure 5.10) speci�es that g col(ACC) should return 48. Suppose that a changeis requested to move ACC two columns to the left; scngeom must be modi�edso that g col(ACC) returns 46. However, no changes to other modules arerequired.6.6 SummaryObtaining a good module decomposition is a di�cult task. There are manypossible decompositions and a poor choice among them can have a profoundimpact on system quality and cost. To reduce maintenance cost, we must planfor the changes that will occur during maintenance. We cannot make all changeseasy so we try to make the likely ones easy. Obviously this approach depends onbeing able to predict changes. While it is rare that all changes can be predicted,experienced developers and users can predict many changes. Common sensedictates that we plan for those that we can predict. Information hiding guidesthe planning by suggesting decompositions and providing inspection criteria.The resulting work product, the Module Guide, provides critical guidance forthe maintainer.6.7 Bibliographic NotesDijkstra's pioneering work on module decomposition established the basic prin-ciples [62] and demonstrated them in practice [63]. The information-hiding tech-nique [64] was developed by Parnas and he demonstrated it in an industrialenvironment [65]. Stepwise re�nement [3, 62, 66] may also be used for moduledecomposition. Parnas provides a detailed comparison of information hiding andstepwise re�nement, as applied to module decomposition [67].





Chapter 7Module InterfaceSpeci�cationHiding representation is the essence of design. [D. L. Parnas]7.1 IntroductionThe previous chapter focused on module decomposition: dividing the develop-ment task into modules. This chapter shows how to precisely specify the moduleinterfaces. We view the speci�cation task in terms of the four roles describedin Section 2.2. Consider module M . The designer decides on M 's observablebehavior and records it in speci�cation S. The developer creates an implemen-tation I to satisfy S. The veri�er determines whether I does in fact satisfy S.The user reads S and writes programs invoking I . Here the user is typically aprogrammer, not an end user. The purpose of a Module Interface Speci�cation(MIS) is to support the four roles. As a result, the speci�cation must be carefullydesigned and reviewed. Interfaces that \just happen" result in modules that aredi�cult to implement and especially di�cult to verify and use.It is common practice to use the module implementation itself as an MIS;users determine a module's behavior by reading its source code. This approachhas a number of serious drawbacks. Again consider module M with implemen-tation I .� During development, opportunities for programmers to work in parallel arelimited. Without a speci�cation, developers of modules using M cannotproceed until I is complete.� There is no record in I of the assumptions that the developer made abouthow the code will be used. Misunderstandings about these assumptionsare a common cause of software failures.107



108 Chapter 7 MODULE INTERFACE SPECIFICATION� The tester cannot begin work until I is complete. Even then, he or she hasno basis for correctness and must rely on guesswork in selecting tests anddetermining expected output.� If M 's implementation is complex, then determining its behavior from thecode will be di�cult, especially if M 's implementation uses other modulesthat in turn use other modules and so on. Frequently, a module with acomplex implementation provides a much simpler service. With an MIS,using the module can be much simpler as well.� In proprietary systems, the source code is normally not available to theuser. Here a speci�cation is essential.In summary, you will frequently use the source code as a speci�cation; it maybe all you have, or it may be simple enough. However, in complex systems, thereliance on code as speci�cation causes serious problems. The techniques of thischapter help to avoid those problems.Section 7.2 de�nes the MIS work product, based on the module state machinedescribed in Section 3.8. Section 7.3 explains interface design, discussing thebasic issues, presenting a collection of design idioms, and de�ning heuristicsfor evaluating design quality. Section 7.4 explains the speci�cation of modulesthat interact with modules other than their caller or with the environment: forexample, the keyboard, screen, and �le system. Section 7.5 presents an MISfor each BSHAM module, and Section 7.6 presents an MIS for each additionalmodule used in ISHAM. Section 7.7 shows how to verify an MIS in an inspectionmeeting. Large portions of the MISs for all nine SHAM modules are presented.The full work products may be found in Appendix C.7.2 Work Product De�nitionThe interface between two programs is simply the set of assumptions that eachmakes about the other. A module interface is the set of assumptions that (1) amodule user is permitted to make about module behavior and (2) the moduledeveloper is permitted to make about user behavior. A Module Interface Speci�-cation (MIS) is a statement of these assumptions. We focus on robust modules:those where the type (1) assumptions dominate and the type (2) assumptionsare few. An MIS is divided into two sections: syntax and semantics.7.2.1 Module interface speci�cation|syntaxThe syntax speci�es the access routine names, the parameter and return-valuetypes, and the exceptions that are signaled. In addition, any exported types andconstants are de�ned. The access routines are shown in tabular form, and thetypes and constants are declared using C syntax. For readability, we use thetype boolean, with constants true and false, where the actual implementation



7.2. WORK PRODUCT DEFINITION 109Table 7.1 stack module interface speci�cation|syntax#define PS MAXSIZ 100Routine names Inputs Outputs Exceptionsps s initps s push int ps fullps s pop ps emptyps g top int ps emptyps g depth intwill use the C type int, with 0 for false and every other value denoting true.Table 7.1 shows the interface syntax for the stack module. The typewriter fontis used for all C identi�ers.Because the interface syntax tables used in the text are not suitable for inputto a C compiler, the syntax information is repeated in a C header �le: a C source�le whose name ends in \.h." For example, stack.h is found in Appendix C.Normally, the inputs are passed as function parameters, and the outputs arepassed back to the caller as function return values. For example, the s pushimplementation takes a parameter of type int and g top returns an int. Occa-sionally, the inputs or outputs are passed di�erently. For example, some outputsare returned using call by reference: the access routine takes a pointer parameterand places the output values at the address in the pointer. Such special casesare described by comments in the header �le.7.2.2 Module interface speci�cation|semanticsThe interface speci�cation semantics are based on the speci�cation trichotomydescribed in Section 2.2: assumptions, exceptions, and normal case. The as-sumptions are expressed in prose, and the normal case and exceptions followthe MSM format described in Section 3.8. However, an MIS contains severaladditional sections: state invariant, local functions, local types, and localconstants. The state invariant is a predicate on the state space that restrictsthe \legal" states of the module. It is invariant in that, after every access routinecall, the state should satisfy the state invariant. For complex speci�cations, wealso make use of local functions, types, and constants. These are declared forspeci�cation purposes only and are not available to the module user at run time.Occasionally there is information that does not �t anywhere in the format justdescribed; we put this information in a section called \considerations."Figure 7.1 shows the semantics for the stack module. The speci�cation stateis the single variable s: a sequence of integers holding the stack elements, withthe top element in the last position. We assume that s init will be calledbefore any other access routine. To understand why, consider the alternative:a method would be needed to detect the user's failure to call s init, and the



110 Chapter 7 MODULE INTERFACE SPECIFICATIONstate variabless : sequence of integerstate invariantjsj � PS MAXSIZassumptionsps s init is called before any other access routine.access routine semanticsps s init:transition: s := hiexceptions: noneps s push(x):transition: s := s k hxiexceptions: exc := (jsj = PS MAXSIZ ) ps full)ps s pop:transition: s := s[0::jsj � 2]exceptions: exc := (jsj = 0) ps empty)ps g top:output: out := s[jsj � 1]exceptions: exc := (jsj = 0) ps empty)ps g depth:output: out := jsjexceptions: noneFigure 7.1 stack module interface speci�cation|semanticsnotinit exception would be added to every access routine except s init itself.This approach is awkward, and it prompted the simplifying assumption in thespeci�cation.The stack transition, output, and exceptions sections are straightforward.s init sets s to empty and never signals an exception. s push(i) appends i to s,signaling full if s has PS MAXSIZ elements. s pop removes the last element andg top returns the value of that element; both signal empty if s has no elements.Finally, g depth returns the number of elements in s.7.2.3 Exception signalingThe stack MIS states precisely when exceptions must be signaled, but it does notsay how the signaling should be done. We briey describe the available methodsfor exception signaling and indicate the one used for SHAM modules.Exception signaling schemes fall into three main categories:1. Idiomatic use of data. Signaling is done using a distinguished return value(e.g., �1), a special status parameter, or a global variable.



7.3. INTERFACE DESIGN 1112. Idiomatic use of control ow. A label or procedure is passed as a parameterto each access routine or established by convention. Exceptions are signaledby branching to the label or invoking the procedure.3. Built-in language constructs. Exceptions are signaled using the specialexception constructs available in languages such as PL/I or Ada.All three methods can be used successfully. However, a systematic and plannedapproach is important.In SHAM, we use method 2 above. To signal an exception, a call is made toan exception handler: a C function with the same name as the exception. Themodule user implements the handler to take whatever action is required. Thus,if s pop is called on an empty stack, then the s pop implementation must invokethe C function empty. Figure 7.2 illustrates how this technique might be usedin an s pop implementation.There are important di�erences between RS and MIS exceptions. An RSexception is caused by an end-user error, and it usually produces a text message.An MIS exception is caused by an error made in a call on an access routine andproduces a call to an exception handler. Generally speaking, SHAM code iswritten to ensure that the MIS exceptions are never signaled, except duringmodule testing. For example, a call to s pop is usually preceded by code suchas: if (ps g depth() > 0)to ensure that the s pop call will not generate the empty exception. Thus, inSHAM code, the occurrence of an MIS exception indicates a fault in the code;the occurrence of an RS exception indicates an error made by the end user.7.3 Interface DesignInterface design consists of a series of decisions about module behavior. Thedesigner must �rst see the available alternatives and then record the decisionsvoid ps s pop()f if (siz == 0) fps empty();return;g--siz;g Figure 7.2 stack exceptions|s pop implementation



112 Chapter 7 MODULE INTERFACE SPECIFICATIONso that they can be reviewed and communicated to others. The design e�ort isdriven by the module service and secret, as recorded in the MG.7.3.1 Access routine idiomsSome invention is required in every design. Design from scratch is expensive,however; it is surprising how much trial and error it takes to get it right. Conse-quently, there is good reason to look for patterns, if they are simple and generalenough. We present a collection of access routine idioms. Each idiom is a set ofroutines that provides access to a structure de�ned with the set, sequence, andtuple type constructors of Section 3.4. Below are simple idioms for each typeconstructor. These provide the basis for a wide variety of interfaces.7.3.1.1 Set idiomsConsider a module providing access to a set of at most N elements of typeT . One access routine idiom|providing update access|is shown in Table 7.2.s add(x) adds element x to the set, signaling mem if e is present and full if theset has N elements. s del(x) deletes x and signals notmem if x is not in the set.g mem(x) returns true if x is present, and g siz returns the number of elementsin the set.7.3.1.2 Sequence idiomsConsider a sequence of a maximum of N elements of type T . Access is providedby absolute position or sequentially, as shown in Table 7.3. For the absoluteposition case, s add(i; x) adds x at position i, shifting right the elements num-bered i and higher. s del(i) deletes the ith element, shifting left the elementsnumbered i+ 1 and higher. s val(i; x) changes the value of the ith element tox, and g val(i) returns the value of the ith element. g siz returns the lengthof the sequence. s add signals full if the sequence length is N . s add, s del,s val, and g val signal position if the position parameter is out of range.Table 7.2 set access routine idioms|syntaxRoutine names Inputs Outputs Exceptionss add T memfulls del T notmemg mem T booleang siz int



7.3. INTERFACE DESIGN 113Table 7.3 sequence access routine idioms|syntaxRoutine names Inputs Outputs ExceptionsBy absolute positions add int positionT fulls del int positions val int positionTg val int T positiong siz intSequentials startsg next T endg end booleanSequential access allows the user to retrieve all of the sequence elements, oneat a time. s start initiates the retrieval process; sg next returns the next ele-ment, signaling end if no elements remain; and g end returns true if no elementsremain. Note that the sequential access idiom can be applied to any collectionof elements, for example, a set or a tree. In the case of a set, the retrieval orderis usually unspeci�ed; the elements can be returned in any order as long as eachelement is returned exactly once.7.3.1.3 Tuple idiomsConsider a module providing access to a tuple of typeT = tuple of (f1 : T1; f2 : T2; : : : ; fN : TN):Two idioms are presented, as shown in Table 7.4. In the �rst, one set routineand one get routine are provided for each �eld in the tuple. This approach issimple, but it is awkward when N is large: with N = 10, 20 access routines arerequired. In the second approach, one set routine and one get routine are used,each passing the entire tuple as a single parameter. This approach works wellfor larger N : N > 20 is common in practice. One disadvantage is that the usermust assign and retrieve all �elds, even if he or she wants only one.7.3.2 Quality criteriaThe fundamental goal in interface design, and engineering design in general, isachieving the best product at the lowest cost. Under cost, both development andmaintenance must be considered. The best product will maximize both run-time



114 Chapter 7 MODULE INTERFACE SPECIFICATIONTable 7.4 tuple access routine idioms|syntaxRoutine names Inputs Outputs ExceptionsOne set and one get routine per �elds f1 T1g f1 T1s f2 T2g f2 T2: : : : : : : : : : : :s fN TNg fN TNOne set and one get routine for entire tuples val Tg val Tperformance and interface quality. A lot is known about the former but littleabout the latter: the subject of this section.We present a set of quality criteria that we have found useful in interfacedesign and review.� Consistent . According to Brooks and Blaauw:A good architecture is consistent in the sense that with a partialknowledge of the system the remainder of the system can bepredicted. We believe this to underlie all principles of quality[68, page 42].While Brooks and Blaauw are referring to CPU interfaces, their adviceapplies equally well to module interfaces. It is important to consider everyaspect of the interface, from naming conventions to exception handling.� Essential . Omit unnecessary features. Do not o�er the same service intwo ways. Remove an access routine if its service can be provided by acombination of other routines.� General . Realize that users will want to use features in ways never imag-ined by the designer. Generality includes open-endedness|leaving roomfor future expansion|and completeness|including all features of a givenclass.� Minimal . Avoid access routines that o�er two di�erent services that mightbe requested separately by the user. Many set-get routines violate mini-mality by inappropriately coupling the set and get services.



7.3. INTERFACE DESIGN 115� Opaque. Ensure that the interface obeys the information-hiding principle.In an opaque interface the secrets are hidden: if one of the likely changesdoes occur, then the interface need not change.Frequently there is tension among the criteria and between cost and thecriteria. For example, minimality and generality increase the number of accessroutines and hence the cost; implementation considerations force violations ofthe opaque criteria. It is important to realize that the criteria do not replacethe designer's judgment. They do help in improving module interfaces. In ourexperience, a number of small improvements result that, in sum, often producea substantial improvement. In summary: be aware of the quality criteria andviolate them only with good reason.We next illustrate the access routine idioms and quality principles on the de-sign of a module interface. We begin the design task by de�ning the speci�cationstate, abstractly modeling the relevant aspects of the past. While the state isoften relatively simple, it is important that it be speci�ed precisely. Then accessroutine design can begin. The access routines are chosen, largely determininghow the module service will be o�ered. Next, the boundaries of the speci�cationtrichotomy are established, de�ning the normal operating range of the module.Finally, the normal-case behavior is speci�ed in detail.7.3.3 The symbol table (symtbl) MISSymbol tables are used for a wide variety of purposes, especially in compilersand assemblers. The symtbl module speci�ed here was designed to support theuse of symbolic addresses in SHAM. symtbl stores a set of symbols (strings) andlocations (integers). Symbols must be unique; locations need not. The location�eld may be set and retrieved. symtbl is a software decision{hiding module; itssecret is the algorithms and data structures used in the implementation.We represent the module state with the variable tbl of typeT = set of tuple of (sym : string; loc : integer)where no two tuples in tbl have the same sym value. The access routines arebased on the set idiom, shown in Table 7.2. The symtbl interface syntax isshown in Table 7.5. s init initializes tbl to empty, s add(s; x) adds hs; xi totbl, and g siz returns the number of pairs in tbl. g exsym(s) returns true if,for some x, hs; xi 2 tbl. g loc(s) returns the loc �eld in the pair containing s.s loc(s; x) changes the location �eld in this pair to x. Observe that s del hasbeen omitted, violating generality. We have omitted it to reduce implementationcost; SHAM symbolic addresses will be added but never deleted. While there isno single access routine for checking for set membership, g exsym and g loc canbe combined to provide this feature.It is useful to view symtbl from a functional perspective:Let f(s) = g loc(s) where dom(f) = fs j g exsym(s)g



116 Chapter 7 MODULE INTERFACE SPECIFICATIONTable 7.5 symtbl module interface speci�cation|syntax#define ST MAXSYMS 50#define ST MAXSYMLEN 20Routine names Inputs Outputs Exceptionsst s initst s add char� st maxlenint st exsymst fullst g exsym char� booleanst s loc char� st notexsymintst g loc char� int st notexsymst g siz intWith f de�ned, we can see that symtbl maintains the function f : s add ands loc change f and g exsym and g loc compute f . Many modules maintainfunctions; it pays to recognize such an underlying function early in interfacedesign.We next discuss the speci�cation trichotomy, de�ned in the assumptionsand exceptions entries in Figure 7.3. There are two assumptions. They are notspeci�ed as exceptions because they are based on conditions that are hard for thesymtbl developer to check. The exceptions are due to both illegal requests andresource restrictions. To indicate duplicates, s add signals exsym. The moduleuser can \predict" this exception by calling g exsym. To allow the developer touse static memory allocation, s add signals maxlen and full. These exceptionscan also be predicted: by strlen (from the C library) for maxlen and by g sizfor full. Both s loc and g loc signal notexsym to indicate that the request isillegal; notexsym can be predicted using g exsym.The state invariant expresses (1) the limit on the number of symbols in tbl,(2) the limit on the length of each symbol, and (3) the requirement that no twotbl entries have the same sym value. The restrictions expressed by the stateinvariant are enforced by the s add exceptions.Figure 7.3 contains the normal-case semantics in the transition and outputentries. These sections follow closely the prose semantics given above. Thegenerality criterion applies twice. The empty string is permitted as a symbol,even though we do not expect it to be added. Negative numbers are permittedas locations, though we expect only non-negative values



7.4. MODULES WITH EXTERNAL INTERACTION 117state variablestbl : set of tuple of (sym : string; loc : integer)state invariant1. jtblj � ST MAXSYMS2. (8t 2 tbl)(jt:symj � ST MAXSYMLEN)3. (8t1; t2 2 tbl)(t1 6= t2 ! t1:sym 6= t2:sym)assumptionsst s init is called before any other access routine.All string parameters are legal C strings.access routine semanticsst s init:transition: tbl := fgexceptions: nonest s add(sym; loc):transition: tbl := tbl [ fhsym; locigexceptions: exc := (jsymj > ST MAXSYMLEN ) st maxlenj (9loc1)(hsym; loc1i 2 tbl)) st exsymj jtblj = ST MAXSYMS ) st full)st g exsym(sym):output: out := (9loc)(hsym; loci 2 tbl)exceptions: nonest s loc(sym; loc):transition: tbl := (tbl� fhsym; loc1ig) [ fhsym; locig where hsym; loc1i 2 tblexceptions: exc := (:(9loc1)(hsym; loc1i 2 tbl)) st notexsym)st g loc(sym):output: out := loc, where hsym; loci 2 tblexceptions: exc := (:(9loc)(hsym; loci 2 tbl)) st notexsym)st g siz:output: out := jtbljexceptions: noneFigure 7.3 symtbl module interface speci�cation|semantics7.4 Modules with External InteractionUntil now, we have speci�ed modules that are standalone; they are requiredto interact only with their callers. For example, in the stack module, accessis provided solely through the access routines: no interaction is required withother modules or with the environment. However, in a number of SHAM modulessuch \external interactions" are present and must be reected in the MISs. FourSHAM modules have substantial interaction with the environment: keybdin,



118 Chapter 7 MODULE INTERFACE SPECIFICATIONscnstr, scndr, and sham; three have substantial interaction with other modules:load, exec, and sham.SHAM modules interact with the environment through the keyboard, theterminal screen, and the �le system. Often, the required interaction can bee�ectively communicated in prose. Occasionally more precision is needed andcan be achieved with the same approach used in the RS: model the environmentwith an environment variable. Environment variables are described in a new MISsection: environment variables. As with a state variable, an environmentvariable has a name and type. However, environment variables also have aninterpretation, which describes the correspondence between the variable's valueand the environment. For example, the scnstr module provides access routines tomodify the contents of the terminal screen. To precisely identify screen locations,we declare an environment variable.scn : sequence[24][80] of charscn[r][c] is the character at screen row r and column c,with numbering zero-relative and beginning at the upper-left corner.Thus, scn[23][0] = 'x' is true if there is an 'x' in the lowest, leftmost positionof the terminal screen.SHAM modules also interact with other modules. In some cases the inter-action occurs, but it is \hidden": it is present in the implementation but thereis no mention of it in the MIS. For example, a stack implementation based ona linked list will use the UNIX malloc module for dynamic memory allocation.This use is not mentioned in the stack MIS. As a result, the choice betweenarray and linked list is hidden from the stack user. In other cases, the externalinteraction should be described in the MIS. Consider the MIS for module M1,which has required interaction with moduleM2. The interaction will be speci�edin the M1 speci�cation either by naming calls on M2 or by naming M2's state.For example, the load module's primary purpose is to store object code in theabsmach module. Thus, the load MIS must describe the e�ect that load accessroutines have on the state of absmach.7.5 BSHAM Speci�cationsThere are �ve BSHAM modules, as shown in the SHAM MG.� token extracts tokens from a string.� absmach stores mem, acc, and pc and modi�es them by executing instruc-tions.� load drives the load phase, relying on token to scan source �les and absmachto store the resulting object code.� exec performs the execution phase, with most of the work done by absmach.



7.5. BSHAM SPECIFICATIONS 119Table 7.6 token module interface speci�cation|syntax#define TK MAXSTRLEN 100#define TK MAXIDLEN 10#define TK MAXINTLEN 5typedef enum fTK ID,TK INT,TK BADTOKg tk toktyp;typedef struct fchar val[TK MAXSTRLEN+1];tk toktyp typ;g tk valtyp;Routine names Inputs Outputs Exceptionstk s inittk s str char� tk maxlentk sg next tk valtyp tk endtk g end boolean� sham serves as coordinator, doing module initialization and invoking loadand exec.The required service for each of these modules is shown in Figure 6.2. Thedesign and speci�cation of the module interfaces are described in the next �vesubsections.7.5.1 The token MISThe token MIS illustrates how local functions and types can be used to advan-tage. We represent the module state with the variable toklist, of typeT = sequence of string:Our intention is that, at any time, toklist contains the sequence of tokens notyet retrieved by the module user.The speci�cation syntax, shown in Table 7.6, is based on the sequential accessidiom, shown in Table 7.3. We could have provided access by absolute position.We chose the sequential access idiom because it is su�cient for our applicationand because it is easy to support with the left-to-right scan of the input stringoften used by developers.According to the MG, a tuple|a value/type pair|must be returned for eachtoken. We return this tuple using one get routine for the entire tuple, as shownin the lower part of Table 7.4.Table 7.6 de�nes the constants, types, and access routines. Three constantsestablish maximum lengths for the string passed by the user, and for identi�er



120 Chapter 7 MODULE INTERFACE SPECIFICATIONand integer tokens. The type tk toktyp names the token types; tk valtyp isthe structure used for returning a value/type pair. The access routine s initinitializes the module and s str(s) establishes s as the string to be scanned.sg next returns the value and type of the next token and g end returns true ifno more tokens remain.We next present the speci�cation trichotomy and the normal-case semantics,shown in Figure 7.4. The assumptions are essentially the same as for symtbl.There is one exception due to an illegal request: sg next signals end if there areno more tokens. The end exception can be predicted by calling g end. Thereis one exception due to resource limitations: s str(s) signals maxlen if s is toolong; maxlen can be predicted using strlen, from the C library.The normal-case semantics are based on local types and functions. These areused by the sg next entry to specify, for a given string, the tokens, and theirtypes. This information can be conveyed more simply when removed from thesg next entry. As shown in the local types section, idtoksetT is the set of allidenti�er tokens and inttoksetT is the set of all integer tokens. As shown in thelocal functions section, the function tokens de�nes the scanning rules: a tokenis a contiguous sequence of non-blanks, beginning at the start of the string orpreceded by a blank, and ending at the end of the string or followed by a blank.The function toktyp(s) categorizes s as an identi�er, integer, or illegal token.Using the functions and types, the normal-case semantics are straightforward.s init sets toklist to empty and s str(s) assigns the tokens in s to toklist.sg next returns the value and type of toklist[0] and removes it from toklist.g end returns true when toklist is empty .7.5.2 The absmach MISThe MIS for the absmach module is de�ned in terms of the SHAM RS, demon-strating how precise requirements can be e�ectively used during design. Theabsmach speci�cation also shows how a variety of access routine idioms can beused in combination. The module state mimics the requirements variables: acc,pc, and mem are declared.The speci�cation syntax is shown in Table 7.7. We view the state variablesas a tuple, with access provided by one set and get routine per �eld. Usinga single set/get pair for the entire tuple would violate minimality: a user whowanted only acc would have to retrieve pc and the mem array as well. Whilenot immediately obvious, execution of SHAM programs is provided using the se-quential access idiom (Table 7.2). Access is provided to the sequence of absmachstates beginning at any given initial state. Because execution may begin fromany state, s start is not needed here. The next state is generated by sg exec,which returns status information only. The status value AM HALT makes a g endaccess routine unnecessary. After sg exec returns, the user may access the statevalues using g acc, g pc, and g mem.



7.5. BSHAM SPECIFICATIONS 121state variablestoklist : sequence of stringstate invariantnoneassumptionstk s init is called before any other access routine.All string parameters are legal C strings.access routine semanticstk s init:transition: toklist := hiexceptions: nonetk s str(s):transition: toklist := tokens(s)exceptions: exc := (jsj > TK MAXSTRLEN ) tk maxlen)tk sg next:transition/output: toklist; out :=toklist[1::jtoklistj � 1];htoklist[0]; toktyp(toklist[0])iexceptions: exc := (toklist = hi ) tk end)tk g end:output: out := (toklist = hi)exceptions: nonelocal typesidtoksetT = fs j s is a string of alphabetic or numeric characters ^s[0] is alphabetic ^ jsj 2 [1::TK MAXIDLEN]ginttoksetT = fs j s is a string of numeric characters ^ jsj 2 [1::TK MAXINTLEN]glocal functionstokens : string! sequence of stringtokens(s) returns the sequence of tokens in s where1. a token is a non-empty subsequence s[i::j] of s2. s[i::j] contains no blanks3. (i = 0 _ s[i � 1] = ` ') ^ (j = jsj � 1 _ s[j + 1] = ` ')toktyp : string! tk toktyptoktyp(s) :=(s 2 idtoksetT ) TK IDj s 2 inttoksetT ) TK INTj true) TK BADTOK)Figure 7.4 token module interface speci�cation|semantics



122 Chapter 7 MODULE INTERFACE SPECIFICATIONTable 7.7 absmach module interface speci�cation|syntax#define AM MEMSIZ 100#define AM MAXINT 999typedef enum fAM NORMAL,AM HALT,AM PRINT,AM ARITHEXC,AM ADDREXC,AM OBJECTEXC,AM NOOPEXCg am stat;Routine names Inputs Outputs Exceptionsam s initam s acc int am intam g acc intam s pc int am addram g pc intam s mem int am addrint am intam g mem int int am addram sg exec am statWe next discuss the speci�cation trichotomy, based on the assumptions andexceptions sections in Figure 7.5. We assume that s init is called �rst. Theexceptions deal with parameters that lie outside �xed ranges. For negative oroversize integers, s acc and s mem signal int. For illegal addresses, s pc, s mem,and g mem signal addr.We conclude with the normal-case semantics. In s init, there is no com-pelling reason to prefer one choice of initial state over another. The main virtueof our choice is that it is simple. We could have left the initial state unspeci�ed.The transition and output sections for the acc, pc, and mem set/get pairsare as expected. The sg exec transition-output section is based directly onsections of the SHAM RS. These sections could be repeated in the MIS, butthe duplication would make document maintenance more expensive. The crit-ical point is that, with a detailed RS, a precise absmach speci�cation can bedeveloped with relatively little e�ort.7.5.3 The load MISThe load MIS is shown in Table 7.8 and Figure 7.6. load interacts with theenvironment, but only by writing error messages to stdout. There are no statevariables because the object code is stored in the absmach module. The inter-face syntax is short and simple: s init initializes the module and sg load(f)processes the source code in �le f , loading the object code into absmach. Theassumptions concern module initialization and the �le parameter to sg load.



7.5. BSHAM SPECIFICATIONS 123state variablesmem : sequence [AM MEMSIZ] of [0::AM MAXINT]acc : [0::AM MAXINT]pc : [0::AM MEMSIZ� 1]state invariantnoneassumptionsam s init is called before any other access routine.access routine semanticsam s init:transition: acc; pc;mem := 0; 0;all zeroesexceptions: noneam s acc(i):transition: acc := iexceptions: exc := (i 62 [0::AM MAXINT]) am int)am g acc:output: out := accexceptions: noneam s pc(a):transition: pc := aexceptions: exc := (a 62 [0::AM MEMSIZ� 1]) am addr)am g pc:output: out := pcexceptions: noneam s mem(a; i):transition: mem[a] := iexceptions: exc := (a 62 [0::AM MEMSIZ � 1]) am addrj i 62 [0::AM MAXINT]) am int)am g mem(a):output: out := mem[a]exceptions: exc := (a 62 [0::AM MEMSIZ� 1]) am addr)am sg exec:transition-output:(an error is speci�ed in the Exec. Phase Exception Table )out := the error identi�erj mem[pc] = SY HALT ) out := AM HALTj mem[pc] = SY PRINT ) out; pc := AM PRINT; pc+ 1j true) out := AM NORMALacc; pc;mem := values speci�ed in the RS Lang. Sem. Table)exceptions: noneFigure 7.5 absmach module interface speci�cation|semantics



124 Chapter 7 MODULE INTERFACE SPECIFICATIONTable 7.8 load module interface speci�cation|syntax#define typedef enum fLD NORMAL,LD ERRORg ld stat;Routine names Inputs Outputs Exceptionsld s initld sg load FILE� ld stat ld filenvironment variablesstdoutUNIX standard outputstate variablesnonestate invariantnoneassumptionsld s init is called before any other access routine.The absmach and token modules have been initialized.The argument to ld sg load points to an open �le control block.access routine semanticsld s init:transition: noneexceptions: noneld sg load(f): de�ned in terms of the SHAM Requirements Speci�cation.transition/output:(�le f has no load errors )absmach:mem := the object code version of the program in fout := LD NORMALj true)write the appropriate messages to stdoutout := LD ERROR)exceptions: exc := (error reading �le f ) ld fil)considerationsIn ld sg load(f), if f has load errors or if ld fil occurs,the value of absmach:mem is \dontcare."Figure 7.6 load module interface speci�cation|semantics



7.5. BSHAM SPECIFICATIONS 125Table 7.9 exec module interface speci�cation|syntaxRoutine names Inputs Outputs Exceptionsex s initex s execThere is one exception: sg load signals fil if f is unreadable. The normal-case semantics mimic the load section in the SHAM RS. However, here assign-ments are to absmach state variables rather than the requirements state vari-ables. The considerations section indicates that in the case where sg load sig-nals an exception, it does not matter what the �nal value of mem is in absmach.This violates the assumption discussed in Section 3.8.3, which speci�es thatcalls that signal an exception should not cause a state transition, but it greatlysimpli�es the implementation of sg load.7.5.4 The exec MISThe exec MIS is shown in Table 7.9 and Figure 7.7. The exec module interactswith the environment through the terminal screen and through stdout. Thereare no state variables because the absmach module maintains the required state.The interface syntax is simple: s init initializes the module and s exec executesthe program stored in absmach.The assumptions require the initialization of exec and absmach, and alsorequire the setting of a compile-time ag. With this ag, and the C preproces-sor's conditional compilation features, batch and interactive execution can besupported by a single exec implementation. There are no exceptions signaled tocallers of exec routines. If the program stored in absmach aborts, the end userwill be informed through a message.In the normal-case semantics there are separate cases for BSHAM andISHAM. These merely refer to the execution-phase FSMs from the BSHAMand ISHAM RSs. The alternative is to repeat these FSMs in the exec MIS,modi�ed slightly to reference the absmach MIS state variables rather than theRS state variables. However, this approach provides little bene�t to the readerof the exec MIS and generates a signi�cant maintenance problem: it is hard tokeep the RS and MIS FSMs consistent.7.5.5 The sham MISThe interface to sham, the SHAM Coordinator module, is signi�cantly di�erentfrom the other SHAM module interfaces. sham has no access routines, inter-acting solely through the keyboard, screen, and �le system. As a result, itsinterface does not �t the module state machine scheme used for the other mod-ules. The sham interface is speci�ed in the SHAM RS. Also, while sham uses



126 Chapter 7 MODULE INTERFACE SPECIFICATION
environment variablesscn the terminal screenstdoutUNIX standard outputstate variablesnonestate invariantnoneassumptionsBefore ex s exec is called, ex s init has been called andthe absmach module has been initialized.At compile time, exactly one of these preprocessor ags is de�ned:BSHAM, ISHAMaccess routine semanticsex s init:transition:if ag ISHAM is set theninitialize the screenexceptions: noneex s exec:transition:if ag BSHAM is set thenperform the execution phase as described in the BSHAM RSelse if ag ISHAM is set thenperform the execution phase as described in the ISHAM RSIn either case:� Use the mem, acc, and pc values stored in the absmach module� Invoke am sg exec to execute the next instruction� Use the am sg exec return value to determine whethera normal case or exception output is neededexceptions: noneFigure 7.7 exec module interface speci�cation|semantics



7.6. ISHAM SPECIFICATIONS 127Table 7.10 keybdin module interface speci�cation|syntaxRoutine names Inputs Outputs Exceptionski s initki sg next charki s endother modules, that use is hidden. In summary, for sham, there is no MIS; theRS provides the information normally found in an MIS. This approach is typicalfor coordinator modules.7.6 ISHAM Speci�cationsThere are nine ISHAM modules. Five of these are shared with BSHAM; theother four are introduced to handle interaction with the keyboard and screen:� keybdin provides character-at-a-time keyboard access.� scngeom stores the position, length, and initial value of each screen �eld.� scnstr provides write access to the screen.� scndr keeps the screen image up to date, relying on scngeom and scnstrto help do so.The required service for each of these modules is shown in Figure 6.4.7.6.1 The keybdin MISThe keybdin MIS is shown in Table 7.10 and Figure 7.8.The speci�cation syntax is based on the sequential access idiom, shown inTable 7.3: s init begins the scan and sg next returns the next character. Here,there is no end exception or g end access routine.The assumptions say that keybdin users must call the terminating accessroutine, s end, if they wish to reinitialize. The normal-case semantics are short.s init turns echoing o�, sg next returns the next available character, and s endsets character echoing back to normal. The note under considerations ad-dresses the common situation where the next character has not yet been typed.Here sg next blocks, not returning to its caller until a key is pressed.7.6.2 The scngeom MISThe scngeom module provides an example of a module with no state: currentaccess routine behavior does not depend on previous calls. The lack of statecauses no di�culties. Indeed, the scngeom MIS is simple. Because scngeomprovides access to a collection of constants, no state is needed.



128 Chapter 7 MODULE INTERFACE SPECIFICATIONenvironment variablesstdin : stringUNIX standard inputstate variablesnonestate invariantnoneassumptionsThe curses module has been initialized.Calls to keybdin obey the following pattern:(ki s init:ki sg next � :ki s end)�, where X� indicates zero or more occurrences of Xaccess routine semanticski s init:transition: turn o� keystroke echoingexceptions: noneki sg next:transition-output: out := the next available characterexceptions: noneki s end:transition: turn on keystroke echoingexceptions: noneconsiderations� Keystrokes are returned by ki sg next in �rst-in{�rst-out order.� Characters are returned immediately, without waiting for a newline.� If, on entry, there is no new keystroke available, ki sg next will not return untilanother keystroke occurs.Figure 7.8 keybdin module interface speci�cation|semanticsThe interface syntax is shown in Table 7.11. We view scngeom as computingthe function f , mapping a screen �eld identi�er to a row/column/length/initial{value tuple. One get routine is provided for each �eld in this tuple. Thus,g legfld de�nes the domain of f and g row, g col, g len, and g val togethercompute f .A portion of the interface semantics is shown in Figure 7.9 (see the full versionin Appendix C). For each �eld identi�er, the table in this �gure de�nes the legalrow and column positions, and the associated �eld in the screen format from theRS. The speci�cation trichotomy is straightforward; s init must be called �rst.The last four get calls reject invalid screen �eld identi�ers, signaling badfld.



7.6. ISHAM SPECIFICATIONS 129Table 7.11 scngeom module interface speci�cation|syntax#define SG NUMROW 24#define SG NUMCOL 80typedef enum fSG MEM,SG PC,SG ACC,SG PRT,SG MSG,SG SCNTTL,SG MEMTTL1,SG MEMTTL2,SG MEMCOLHDR,SG MEMROWHDR,SG PCTTL,SG ACCTTL,SG PRTTTL,SG PROMPTTTL,SG MSGTTLg sg fldnam;typedef struct fsg fldnam nam;int row;int col;g sg fld;Routine names Inputs Outputs Exceptionssg s initsg g legfld sg fld booleansg g row sg fld int sg badfldsg g col sg fld int sg badfldsg g len sg fld int sg badfldsg g val sg fld char� sg badfld7.6.3 The scnstr MISThe scnstr MIS is shown in Table 7.12 and Figures 7.10 and 7.11. The spec-i�cation syntax is based on the by absolute position idiom shown in Table 7.3.Because the screen size is �xed, s add and s del are not provided, and the arrayheight and width are supplied as constants. s init initializes the module ands clrscn clears the screen. s str(r; c; s) writes the string s, beginning at screenrow r and column c. s hlt(r; c; l; f) modi�es the highlighting of the screen, be-ginning at row r and column c for l positions; highlighting is turned on if fis true and o� otherwise. Calls to s clrscn, s str, s hlt, and s cur have novisible e�ect until s ref (\refresh") is called. At that point, all the changes sincethe last s ref call are applied.Three environment variables are used to model the terminal screen: scncontains the characters displayed at each screen position, hlt indicates whethereach screen position is highlighted, and cur indicates the position of the terminalcursor. The state variables scnbuf , hltbuf , and curbuf have the same typeas their environment variable counterparts, and they are used to specify thebu�ered-write scheme described in the MG.



130 Chapter 7 MODULE INTERFACE SPECIFICATIONLegal Legal Associated �eld inIdenti�er row values column values ISHAM RSVariable �eldsSG MEM [0::9] [0::9] MEMSG PC 0 0 PCSG ACC 0 0 ACCSG PRT 0 0 PRTSG MSG 0 0 MSGFixed �eldsSG SCNTTL 0 0 Screen titleSG MEMTTL1 0 0 MEM title line 1SG MEMTTL2 0 0 MEM title line 2� � �SG MSGTTL 0 0 Error message titlestate variablesnonestate invariantnoneassumptionssg s init is called before any other access routineaccess routine semanticssg s init:transition: noneexceptions: nonesg g legfld(fld):output: out := (fld is a legal �eld identi�er)exceptions: nonesg g row(fld):output: out := starting screen row for fld, zero-relativeexceptions: exc := (fld is not a legal �eld identi�er ) sg badfld)sg g col(fld):: : :sg g len(fld):: : :sg g val(fld):output: out :=(fld is a �xed screen �eld ) as shown in the ISHAM RSj fld is a variable screen �eld ) "")exceptions: exc := (fld is not a legal �eld identi�er ) sg badfld)Figure 7.9 scngeom module interface speci�cation|semantics



7.6. ISHAM SPECIFICATIONS 131Table 7.12 scnstr module interface speci�cation|syntax#define SS NUMROW 24#define SS NUMCOL 80Routine names Inputs Outputs Exceptionsss s initss s clrscnss s str int ss rowint ss colchar� ss lenss s hlt int ss rowint ss colint ss lenbooleanss s cur int ss rowint ss colss s refss s endThe assumptions state that the s init/s end bracketing convention usedin keybdin is also required in scnstr. The legality of string parameters is alsoassumed. There are three exceptions, all due to inherently illegal requests; row,col, and len are signaled when the indicated position(s) does not lie on thescreen.In the normal-case semantics, s clrscn, s str, s hlt, and s cur a�ect onlythe state variables; s ref speci�es the e�ect on the environment simply by as-signing each state variable to the corresponding environment variable.We note two violations of the quality heuristics.1. s clrscn violates minimality by homing the cursor: the user may want itleft where it was. However, the current design is su�cient for our needsand is simpler to implement.2. The lack of get calls violates generality. For example, s str writes a stringto the screen, and no access routine reads from the screen. Again, thecurrent design is su�cient for SHAM and is simpler.However, note that s str and s hlt accept \zero-length requests" to avoid vio-lating generality. Finally, we note that scnstr will interact with another module:the system module providing screen access. The nature of this interaction ishidden|it is scnstr's secret|and so is not mentioned in the MIS.



132 Chapter 7 MODULE INTERFACE SPECIFICATION
environment variablesscn : sequence [SS NUMROW][SS NUMCOL] of charscn[r][c] is the character at screen row r and column c,with numbering zero-relative and beginning at the upper-left cornerhlt : sequence [SS NUMROW][SS NUMCOL] of booleanhlt[r][c] is true if the position at screen row r and column c is highlighted,with numbering zero-relative and beginning at the upper-left cornercur : tuple of (row : [0::SS NUMROW� 1]; col : [0::SS NUMCOL� 1])the terminal cursor is at screen row cur:row and column cur:colwith numbering zero-relative and beginning at the upper-left cornerstate variablesscnbuf : sequence [SS NUMROW][SS NUMCOL] of charhltbuf : sequence [SS NUMROW][SS NUMCOL] of booleancurbuf : tuple of (row : [0::SS NUMROW� 1]; col : [0::SS NUMCOL � 1])state invariantnoneassumptionsThe curses module has been initialized.Calls to scnstr obey the following pattern:(ss s init:T � :ss s end)�, whereT is any call other than ss s init or ss s endX� indicates zero or more occurrences of XString parameters are legal C strings.Figure 7.10 scnstr module interface speci�cation|semantics part 1
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access routine semanticsss s init:transition: noneexceptions: noness s clrscn:transition: scnbuf; hltbuf; curbuf := all ' '; allfalse; h0; 0iexceptions: noness s str(row; col; s):transition: (jsj > 0) scnbuf [row][col::col + jsj � 1] := s)exceptions: exc :=(row 62 [0::SS NUMROW� 1]) ss rowj col 62 [0::SS NUMCOL � 1]) ss colj jsj 62 [0::SS NUMCOL� col]) ss len)ss s hlt(row; col; l; f):transition: (l > 0) hltbuf [row][col::col + l� 1] := f)exceptions: exc :=(row 62 [0::SS NUMROW� 1]) ss rowj col 62 [0::SS NUMCOL � 1]) ss colj l 62 [0::SS NUMCOL� col]) ss len)ss s cur(row; col):transition: curbuf := hrow; coliexceptions: exc :=(row 62 [0::SS NUMROW� 1]) ss rowj col 62 [0::SS NUMCOL � 1]) ss col)ss s ref:transition: scn; hlt; cur := scnbuf; hltbuf; curbufexceptions: noness s end:transition: noneexceptions: noneconsiderationsss s str and ss s hlt may alter the value of curbuf .Figure 7.11 scnstr module interface speci�cation|semantics part 2



134 Chapter 7 MODULE INTERFACE SPECIFICATIONTable 7.13 scndr module interface speci�cation|syntaxRoutine names Inputs Outputs Exceptionssd s initsd s clrscnsd s consd s memsd s pcsd s accsd s prt intsd s msg char�sd s hlt intboolean7.6.4 The scndr MISThe scndr MIS is shown in Table 7.13 and Figure 7.12. The scndr syntaxincludes one call per screen �eld, plus a few utility calls. s init initializesthe module, s clrscn clears the screen, and s con displays all of the constantscreen �elds. s mem, s pc, and s acc copy the corresponding absmach valuesto the appropriate screen locations. s hlt(a; f) turns highlighting on or o� inthe MEM �eld with address a. s prt(i) displays i in the PRT �eld; s msg(s)displays s in the MSG �eld.The environment variable scn is used to specify the e�ects of calls on theterminal screen. No state variables are declared because scndr displays the valuesstored by absmach. The assumptions concern initialization of scndr and of thethree other modules on which it depends. Note that there are no assumptionsregarding the absmach module state: whatever is there is displayed.The normal-case semantics are straightforward, based on assignments toscreen �elds. While we have focused on scndr's interaction with the environment,it does of course interact with the absmach module as well. Here the interactionis speci�ed because the scndr user needs to know where the displayed valuescome from.7.7 Veri�cationAfter an MIS has been written, it must be veri�ed. As described in Section 2.4,veri�cation can be accomplished using inspection and testing. However, ourMISs are not executable and therefore cannot be tested. Figure 7.13 shows theMIS inspection criteria. We review the \additional criteria" list from an inspec-tion viewpoint. Note that items 1{3 describe characteristics of the speci�cationdocument, while items 4{6 describe characteristics of the interface speci�ed.



7.7. VERIFICATION 135environment variablesscn the terminal screenstate variablesnonestate invariantnoneassumptionssd s init is called before any other access routine.The absmach, scnstr, and scngeom modules have been initialized.The address passed to sd s hlt is a legal address.access routine semanticsNote: MEM , PC, ACC, PRT , and MSG are screen �elds from the ISHAM RS.sd s init:transition: noneexceptions: nonesd s clrscn:transition: clear terminal screenexceptions: nonesd s con:transition: display the �xed screen �eldsexceptions: nonesd s mem:transition:(8r; c 2 [0::9])MEM [r; c] := am g mem(10 � r + c),converted to ASCII, right justi�ed and padded left with blanksexceptions: nonesd s pc: : : :sd s acc: : : :sd s prt(x): : : :sd s msg(s): : : :sd s hlt(a; f):transition:(f = true) display MEM[a=10; a%10] in inverse videoj f = false) display MEM[a=10; a%10] normally)exceptions: noneconsiderationsFor each �eld displayed by scndr, the value is truncated to the �eldlength returned by scngeom.Figure 7.12 scndr module interface speci�cation|semantics



136 Chapter 7 MODULE INTERFACE SPECIFICATION1. Well formed. The inspectors check for misuses of the MSM language. Forexample, does every set call have a transition entry and an exceptionsentry? Do calls in the semantics have the number and type of argumentsshown in the syntax?2. Comprehensible. Can the inspection team understand the document? Herethe team members serve as representatives of the intended audience.3. Complete. Completeness is an ideal target for inspections: it is well suitedto the inspection framework and lack of completeness is a common causeof failures. The key questions are� Are the assumptions reasonable?� Are the exceptions detectable?� On the normal-case domain|no assumption is violated and no ex-ception is generated|are the transition, output, and transition-output entries well de�ned?4. State invariant holds. Is the state invariant always true on access routineexit? Typically, the reader argues that (1) when s init returns, the stateinvariant is true and (2) for any other access routine, if the state invariantholds when the routine is invoked, then it also holds when the routinereturns.5. Su�cient. It is often di�cult to demonstrate su�ciency because the onlyprecise speci�cation of the service is the MIS itself; the MG entry providesonly a sketch. In some cases, hypothetical user code (or pseudocode) ishelpful. For example, Figure 7.14 shows that the token interface can ex-tract the token values and types from a string containing a variable numberof tokens. In other cases, the RS can be exploited. For example, the scnstrinterface is su�cient because it can display and update the screen shownin the ISHAM RS.6. Feasible. While an MIS makes no mention of the underlying implemen-tation, it is important that the interface be implementable and that theimplementation be testable through the interface. Where feasibility is inquestion, it can be demonstrated with solution sketches, e.g., pseudocodeimplementations or partial test plans.7. High quality. The quality heuristics can be applied in a checklist fashion.Where the heuristics are violated, justi�cation must be provided.We illustrate criterion 4 by showing that the stack state invariant shown inFigure 7.1 is established by s init and maintained by the other access routines.Immediately following s init, s = hi and so jsj = 0. Thus, calling s initestablishes the state invariant. Scanning the stack MIS, we see that only s pushand s pop change s. s pop decreases jsj and so cannot cause jsj to exceed MAXSIZ.



7.7. VERIFICATION 137� Audience. Module designer, implementor, tester, and user.� Prerequisites. A reading knowledge of the Module Interface Speci�cation lan-guage.� Purpose. Describe the assumptions that users are permitted to make aboutmodule behavior, independent of the underlying implementation. Also describethe assumptions the module implementor is permitted to make.� Additional criteria.1. Well formed. The speci�cation is well formed with respect to the formatdescribed in Section 3.8.2. Comprehensible. The speci�cation can be read and understood by the in-tended audience.3. Complete. Every call in every state violates an assumption, generates anexception, or is handled by the normal-case semantics.4. State invariant holds. The state invariant is true after every access routinecall.5. Su�cient. The speci�ed interface provides the required service.6. Feasible. The module can be implemented and tested a�ordably.7. High quality. Where practical, the interface satis�es the quality heuristicsdescribed in Section 7.3.Figure 7.13 Module interface speci�cation criteria
char s[TK MAXSTRLEN+1];tk valtyp valtyp;tk s init();...tk s str(s);while (!tk g end()) ftk sg next(&valtyp);printf("val=%s typ=%dnn", valtyp.val,valtyp.typ);g Figure 7.14 Su�ciency: token module interface speci�cation



138 Chapter 7 MODULE INTERFACE SPECIFICATIONs push does increase jsj by 1, but, due to the exception entry, does so only ifjsj < MAXSIZ. Thus, s push maintains the state invariant.7.8 SummaryModule Interface Speci�cations (MISs) play a vital role in controlling large soft-ware systems. While much of this chapter is concerned with notational details,the notations themselves are secondary. The primary concern is support for thefour key roles in modular software development: designer, developer, veri�er,and user. An MIS gives the designer a medium for design and review, providesthe developer with a clear statement of the required task, supplies the veri�erwith a basis for correctness, and frees the user from having to know about mod-ule internals. Without an MIS, the e�ectiveness of information hiding is severelylimited. Throughout, the goal is precise, written communication.Our MISs are based directly on the MSMs presented in Section 3.8. Toproduce better interfaces with less e�ort, we package past experience in theform of design idioms and quality heuristics. Special consideration is given tomodules with external interaction with other modules or with the environment.The SHAM MISs show how precise, practical MISs can be written for a va-riety of behavior-hiding, machine-hiding, and software decision{hiding modules.Interface errors are a signi�cant problem in large systems. By relying onthe criteria presented in Section 7.7, MIS faults can be detected before codingbegins.7.9 Bibliographic NotesParnas's pioneering work established the key concepts and demonstrated thefeasibility of precise Module Interface Speci�cations [69]. Later work by Parnaset al. shows the tradeo�s required when designing interfaces for performance-critical applications [70]. The industrial case study by Jackson and Ho�manshows how to verify Module Interface Speci�cations in inspection meetings [39].Considerable e�ort has been invested in highly formal approaches to interfacespeci�cation using VDM [12], Z [11], algebraic methods [17, 71], and the tracemethod [18, 72]. Object-oriented methods often employ Module Interface Spec-i�cations in some form, as shown by Meyer's design by contract [73] and in thedocumentation for The C++ Booch Components [74].



Chapter 8Module Internal DesignRepresentation is the essence of programming. [F. P. Brooks]8.1 IntroductionAfter an MIS is written for a module M , the �rst step towards implementing Mis to design the internal data structures for M . The choice of data structures isrecorded in the Module Internal Design (MID).The MIS and the Module Implementation for M di�er in two fundamentalways.1. They di�er in their use of state: the MIS uses abstract state variables,whereas the Module Implementation uses variables of the implementationlanguage.2. They di�er in their expression language: the MIS expresses the behaviorof the access programs in terms of mathematical expressions and prose,whereas the Module Implementation uses statements of the implementa-tion language.When the abstract and the concrete state di�er signi�cantly, it pays to overcomethe above two di�erences in two steps. The MID deals with the �rst di�erence:it speci�es the concrete state of the module, and the e�ect of each access routinein terms of this concrete state.The abstract state is chosen for the clarity of the MIS. There are two reasonsfor introducing a concrete state that is di�erent from an abstract state.1. The types of the abstract state variables are unavailable in the imple-mentation language. For example, while sequences and tuples have directcounterparts in C (arrays and structures), there is no counterpart for sets.139



140 Chapter 8 MODULE INTERNAL DESIGN2. An implementation using the abstract state is ine�cient. For example,while look-up in an unordered sequence takes linear time, it can be donein logarithmic time in an ordered sequence. Here, there is no advantagein ordering the elements in the MIS, but it might be important for theModule Implementation.Since the only di�erence between an MIS and an MID is the state space, thebene�ts from an MID are greatest when there are major di�erences between theabstract and concrete states. In fact, there are no bene�ts to an MID whenthe two state spaces are identical or when there is no concrete state. For suchmodules, we omit the MID.Section 8.2 introduces the MID work product, based on the module statemachine described in Section 3.8. In addition, the MID de�nes a state invariantand an abstraction function, whose roles are discussed in Section 8.3. Section 8.4discusses the MID of modules with external interaction and Sections 8.5 and 8.6discuss the MIDs of the BSHAM and ISHAM modules. Section 8.7 shows howto verify an MID in an inspection meeting. The MIDs for all SHAM modulesthat have an MID are presented in detail. The full work products may be foundin Appendix D.8.2 Work Product De�nitionThe format of an MID closely follows that of an MIS. Since the interface syntaxis the same as in the MIS, it is not repeated in the MID. The semantics ofthe MID follow the MSM format described in Section 3.8. In this case, thestate variables are de�ned in the implementation language. In addition to thestate variables and access routine semantics sections, the MID containstwo more sections: state invariant and abstraction function. The stateinvariant is similar to the state invariant of the MIS and de�nes a predicate onthe concrete state space that restricts the \legal" states of the module. Thus,after every access routine call, the concrete state satis�es the state invariant.The abstraction function associates an abstract state with each concrete state.Speci�cally, it is a function from the legal concrete states to the abstract states.Just as for MISs, complex MIDs sometimes make use of local functions, types,and constants. These are declared for speci�cation purposes only and need notbe implemented. Information that does not �t anywhere in this format is placedin a section called considerations.8.2.1 The stack MIDFigure 8.1 shows the MID for the stack module. Recall that the abstract statefor stack is the single variable s representing the sequence of integers in the stack(Figure 7.1). Similarly, the concrete state contains an array of integers, stack,to store the elements in the stack. Since there is no way of obtaining the depth



8.2. WORK PRODUCT DEFINITION 141state variablesint stack[PS MAXSIZ];int siz;state invariantsiz 2 [0::PS MAXSIZ]abstraction functionjsj = siz ^ (8i 2 [0::siz � 1])(s[i] = stack[i])access routine semanticsps s init:transition: siz := 0exceptions: noneps s push(x):transition: stack[siz]; siz := x; siz + 1exceptions: exc := (siz = PS MAXSIZ ) ps full)ps s pop:transition: siz := siz� 1exceptions: exc := (siz = 0) ps empty)ps g top:output: out := stack[siz� 1]exceptions: exc := (siz = 0) ps empty)ps g depth:output: out := sizexceptions: noneFigure 8.1 stack module internal designof the stack from this array, the concrete state also contains the integer siz,representing the depth of the stack.The state invariant speci�es that the value of siz must range between 0 andPS MAXSIZ: when it is 0 the stack is empty, and when it is PS MAXSIZ the stackis full. Note that the state invariant must not restrict the contents of the arraystack: for any stack value, there is a trace that generates that value.For each concrete state, the abstraction function de�nes the correspondingabstract state. For stack, the length of s corresponds to the value of siz, andthe contents of s correspond to the contents of the �rst siz elements of stack.Note that the expression(8i 2 [0::siz� 1])(s[i] = stack[i])is not de�ned for values of siz > PS MAXSIZ, because stack contains onlyPS MAXSIZ elements. However, the state invariant guarantees that this situa-tion will not occur; the abstraction function is de�ned for all legal states.



142 Chapter 8 MODULE INTERNAL DESIGNTable 8.1 stack module internal design|execution tables (PS MAXSIZ = 3)(a) s init:s push(1):s push(2):g topCall Abstract state Concrete state Output Exception(1) s init hi hh?; ?; ?i; 0i | |(2) s push(1) h1i hh1; ?; ?i; 1i | |(3) s push(2) h1; 2i hh1; 2; ?i; 2i | |(4) g top h1; 2i hh1; 2; ?i; 2i 2 |(b) s init:s push(1):s pop:g topCall Abstract state Concrete state Output Exception(1) s init hi hh?; ?; ?i; 0i | |(2) s push(1) h1i hh1; ?; ?i; 1i | |(3) s pop hi hh1; ?; ?i; 0i | |(4) g top hi hh1; ?; ?i; 0i ? emptyThe stack access routine semantics are straightforward. s init sets sizto 0 and never signals an exception. s push(x) places x in stack[siz] andincrements siz, signaling full if siz is PS MAXSIZ. s pop decrements siz, andg top returns the value of stack[siz� 1]; both signal empty if siz is 0. Finally,g depth returns siz.8.3 State Invariants and Abstraction FunctionsThe state invariant and the abstraction function are important aids in under-standing the choice of concrete state. They serve as useful documentation ex-pressing the designer's intentions. The state invariant restricts the concrete statespace by eliminating values that are unreachable. The abstraction function pro-vides an interpretation of the legal concrete states by de�ning how each legalconcrete state corresponds to an abstract state. The state invariant and theabstraction function also play an important role in the veri�cation of an MID,as described in Section 8.7.Let us look at some examples for stack. Table 8.1(a) shows the executiontable for the abstract and concrete states of stack for the traces init:s push(1):s push(2):g topFor brevity, we assume that PS MAXSIZ = 3. To represent the concrete state, weuse terms of the form hhs[0]; s[1]; s[2]i; ni, where hs[0]; s[1]; s[2]i represents thecontents of the array stack and n represents the value of siz. For state andoutput values, the symbol ? is used where no particular value is speci�ed by theMID.



8.3. STATE INVARIANTS AND ABSTRACTION FUNCTIONS 143Note that in Table 8.1(a), after every call (1) the state invariant is satis�edby the concrete state, and (2) applying the abstraction function to the concretestate produces the abstract state. It is straightforward to see that the stateinvariant (siz 2 [0::3] since PS MAXSIZ = 3) is satis�ed by each concrete state.Since siz = 0 in the initial concrete state, applying the abstraction function tothis state results in the abstract state hi, which is the initial abstract state. Sim-ilarly, if we apply the abstraction function to the concrete state after s push(1),namely hh1; ?; ?i; 1i, then we obtain h1i, the abstract state after the same call.Finally, after s push(2) the concrete state is hh1; 2; ?i; 2i, which corresponds tothe abstract state h1; 2i. In addition, g top returns 2 for both the concrete stateand the corresponding abstract state.As a second example, the execution table for the traces init:s push(1):s pop:g topis shown in Table 8.1(b). Again, it is straightforward to see that the stateinvariant is satis�ed and that the initial concrete state corresponds to the initialabstract state. Moreover, the next call|s push(1)|is the same as in the previ-ous example. After s pop the concrete state is hh1; ?; ?i; 0i, and if we apply theabstraction function to this state, we obtain the abstract state hi. Finally, theoperation of g top signals the exception empty for both the concrete state andthe corresponding abstract state. Note the output ? shown for g top; becauseof the exception, any integer value is correct.8.3.1 The symtbl MIDThe stack state invariant and abstraction function are both simple. Figure 8.2shows the MID for symtbl, which has a more interesting state invariant and ab-straction function. The abstract state for symtbl is the set tbl of symbol/locationpairs (Figure 7.3). Similarly, the concrete state consists of the array tbl ofsymbol/location pairs and the integer tblcnt that represents the number of el-ements in the table. The symbols are stored in tbl[0::tblcnt � 1] and eachsymbol is stored in an array of ST MAXSYMLEN+ 1 characters: the symbol is atmost ST MAXSYMLEN characters long, and the extra character is needed to storethe null character that terminates the string. For simplicity, we have chosen toimplement the symbol table as an array because for this application it is notworth allocating the memory dynamically.The state invariant is de�ned in three parts.1. Every symbol in tbl[0::tblcnt�1] contains a null character and is thereforea valid C string. This could be expressed more formally as(8i 2 [0::tblcnt� 1])(9j 2 [0::ST MAXSYMLEN])(tbl[i]:sym[j] is the null character)but we prefer the informal version because it is unambiguous and easier tounderstand.



144 Chapter 8 MODULE INTERNAL DESIGNstate variablesstruct fchar sym[ST MAXSYMLEN+1];int loc;g tbl[ST MAXSYMS];int tblcnt;state invariant1. Every symbol in tbl[0::tblcnt � 1] contains a null.2. There are no duplicate symbols in tbl[0::tblcnt � 1].3. tblcnt 2 [0::ST MAXSYMS]abstraction functiontbl = fhsym; loci j (9i 2 [0::tblcnt � 1])(sym = tbl[i]:sym ^ loc = tbl[i]:loc)gaccess routine semanticsst s init:transition: tblcnt := 0exceptions: nonest s add(sym; loc):transition: tblcnt; tbl[tblcnt] := tblcnt+ 1; hsym; lociexceptions: exc := (jsymj > ST MAXSYMLEN ) st maxlenj findsym(sym) 6= NOTFOUND ) st exsymj tblcnt = ST MAXSYMS ) st full)st g exsym(sym):output: out := (findsym(sym) 6= NOTFOUND)exceptions: nonest s loc(sym; loc):transition: tbl[findsym(sym)]:loc := locexceptions: exc := (findsym(sym) = NOTFOUND ) st notexsym)st g loc(sym):output: out := tbl[findsym(sym)]:locexceptions: exc := (findsym(sym) = NOTFOUND ) st notexsym)st g siz:output: out := tblcntexceptions: nonelocal constants#define NOTFOUND -1local functionsfindsym : string! integerfindsym(s) = ((9i 2 [0::tblcnt � 1])(s = tbl[i]:sym)) ij true) NOTFOUND)Figure 8.2 symtbl module internal design



8.4. MODULES WITH EXTERNAL INTERACTION 1452. There are no duplicate symbols in tbl[0::tblcnt � 1]. Again, we couldexpress this more formally as(8i; j 2 [0::tblcnt� 1])(i 6= j ! tbl[i]:sym 6= tbl[j]:sym)but we prefer the informal version.3. tblcnt is restricted to [0::ST MAXSYMS]. In this case, the formal expressionis shorter and clearer.According to the abstraction function, the abstract state consists of the �rsttblcnt symbol/identi�er pairs of the array tbl. Note that the �rst and thirdpart of the state invariant are su�cient to ensure that the abstraction function isde�ned for all legal states. Although we could have weakened the state invariantby omitting the second part, it provides valuable information about the concretestate space. In general, the state invariant de�nes a superset of the concretestates that can be reached by a sequence of calls. Where feasible, we want thestate invariant to de�ne exactly which concrete states are reachable.To de�ne the access routine semantics, we use the local function findsym.If s is one of the the �rst tblcnt elements of tbl, findsym(s) returns the indexof s in tbl; otherwise, it returns the local constant NOTFOUND. The de�nition offindsym contains a slight abuse of notation. Strictly speaking, the last occur-rence of i in the expression(9i 2 [0::tblcnt� 1])(s = tbl[i]:sym)) iis free (it appears outside the scope of the existential quanti�er) and its value istherefore unde�ned. We have taken this liberty, because we feel that the aboveexpression is clear enough, and the alternative expression(9i 2 [0::tblcnt� 1])(s = tbl[i]:sym)) i, such thati 2 [0::tblcnt� 1] ^ s = tbl[i]:symis clumsy and hard to understand.A second liberty we have taken with the de�nition of findsym is that, asit is de�ned above, findsym is not really a function: its return value dependson the values of tblcnt and tbl. To remedy the situation, tblcnt and tblwould have to be added as arguments to findsym. Since it occurs regularly thatstate variables are used in local functions, we assume that the state variables areimplicit arguments to every local function.With the de�nition of findsym, the access routine semantics are straightfor-ward.8.4 Modules with External InteractionJust as for MISs, MIDs for modules with external interaction can be quite dif-ferent from MIDs for standalone modules. We �rst discuss interaction with theenvironment and then interaction with other modules.



146 Chapter 8 MODULE INTERNAL DESIGNInteraction with the environment is typically modeled in an MIS by introduc-ing environment variables. These di�er from state variables in that they not onlyhave a name and type, but also an interpretation. For example, the scnstr MIS(Figure 7.10) de�nes the scn environment variable, representing the charactersdisplayed on the screen. The Module Implementation cannot use such variables,and often interaction with the environment is accomplished through the use ofsystem libraries. For example, in scnstr, we use the UNIX curses library toobtain access to the screen.For such modules, there need not be a direct relationship between the abstractand the concrete state and we cannot de�ne an abstraction function. This inturn means that there is little or no relationship between the operations of theaccess routines on the abstract and on the concrete state. Three possible waysof dealing with this situation are:1. Just as for an MIS, introduce environment variables in the MID. Thus, thestate space of an MID would consist of both the concrete state and theenvironment variables.2. Invent a state space for the libraries that are used in the Module Imple-mentation, and express the e�ect of the access routines in terms of thishypothetical state.3. Omit the MID.We prefer option 3. By introducing environment variables, the MIS and the MIDbecome identical, and the MID does not contribute anything at all. Similarly, in-venting a new state space is a considerable amount of work that contributes littleto the primary purpose of an MID: to facilitate the construction and veri�cationof the Module Implementation.For modules that interact with other modules, the MIS typically referencesaccess routines or the abstract state of the other modules. For example, in theload MIS (Figure 7.6), the e�ect of ld sg load is expressed in terms of thestate variable mem of the absmach MIS. In the Module Implementation, thise�ect is accomplished by calling access routines of the other module and oftenno concrete state is needed. To express this e�ect in an MID, we would againrefer to the access routines or the abstract state of the other module, since wede�nitely do not want to refer to the concrete state of the other module. Thismeans that the MIS and the MID would be the same, and we therefore omit theMID.In the discussion above we have assumed idealized modules whose only pur-pose is either to interact with the environment or with other modules. In general,we do not omit the MID simply because the module interacts with the environ-ment or other modules. We consider each module separately, taking into accountboth how the interaction is modeled in the MIS, and how the interaction canbe accomplished in the Module Implementation. For example, even if a module



8.5. BSHAM MODULE INTERNAL DESIGNS 147has external interactions, part of the abstract state space might have a corre-sponding part in the concrete state space. In such a case, we would de�ne anMID for that part of the state space. In the following sections, we discuss eachof the SHAM modules and consider the above issues for the modules that haveexternal interactions.8.5 BSHAM Module Internal DesignsIn this section, we discuss the MIDs of the BSHAM modules. Since we assumethat the reader already knows how to program, we do not explain how to choosean appropriate concrete state. Instead, we focus on how to record the choice ofconcrete state in an MID.8.5.1 The token MIDThe abstract state for token is the sequence of tokens that have not yet beenreturned by sg next (Figure 7.4). A possible concrete state would consist of anarray to store the string passed by s str and an index to keep track of the lastcharacter to be scanned. However, with such a concrete state there are manyspecial cases that must be considered for sg next: a string with only blanks,blanks (or not) before the �rst token in the string, and blanks (or not) after thelast token. We reduce the number of special cases by using two simple techniques.1. Use a sentinel character. By placing a blank after the last character inthe string, we are guaranteed that every token in the string is immediatelyfollowed by a blank.2. Always advance to the next token. By skipping over leading blanks, we areguaranteed that if there is a token remaining, then we are always placedat the start of that token.An MID for token incorporating these decisions is shown in Figure 8.3. Theconcrete state consists of the array of characters buf to store the string, andthe index cur to indicate the current character in the array. Note the two extracharacters in buf; one for the sentinel, and one for the null terminator.The state invariant contains three parts. The �rst part states that buf con-tains a valid C string. The second part restricts cur to [0::leftnull(buf)]; whereleftnull is a local function that returns the index of the leftmost null characterin an array of characters. Note that leftnull is unde�ned when there is no nullcharacter in the array and must therefore be applied with care. The third partstates that if there is a token remaining in buf, then (1) there is no leading blankbefore the next token and (2) the character before the leftmost null character isa blank: the sentinel.The abstraction function states that toklist, the sequence of remaining to-kens, is the sequence of tokens in buf, starting from buf[cur]. Since the MIS



148 Chapter 8 MODULE INTERNAL DESIGNstate variableschar buf[TK MAXSTRLEN+2];int cur;state invariant1. buf[0::TK MAXSTRLEN + 1] contains a null.2. cur 2 [0::leftnull(buf)]3. cur < leftnull(buf)! (buf[cur] 6= ' ' ^ buf[leftnull(buf)� 1] = ' ')abstraction functiontoklist = the sequence of tokens in buf[cur::leftnull(buf)� 1]access routine semanticstk s init:transition: buf; cur := ""; 0exceptions: nonetk s str(s):transition:buf := (there is a token in s[0::leftnull(s) � 1]) rmblanks(s) k " "j true) "")cur := 0exceptions: exc := (jsj > TK MAXSTRLEN ) tk maxlen)tk sg next:transition/output:Let curtok be the token beginning at buf[cur]curtoktyp be the token type of curtokout := hcurtok; curtoktypicur := (there is a token, beginning at position i,in buf[cur + jcurtokj + 1::leftnull(buf)� 1]) ij true) leftnull(buf))exceptions: exc := (buf[cur] = null) tk end)tk g end:output: out := (buf[cur] = null)exceptions: nonelocal functionsleftnull : string ! integerleftnull(s) := (there is a null in s) the index of the leftmost one)rmblanks : string ! stringrmblanks(s) := s, with leading blanks removedFigure 8.3 token module internal design



8.5. BSHAM MODULE INTERNAL DESIGNS 149state variablesint acc,pc;int mem[AM MEMSIZ];state invariant1. acc 2 [0::AM MAXINT]2. pc 2 [0::AM MEMSIZ � 1]3. (8i 2 [0::AM MEMSIZ� 1])(mem[i] 2 [0::AM MAXINT])considerationsSince the abstract and concrete states are identical, the abstraction function and theaccess routine semantics are omitted.Figure 8.4 absmach module internal designalready de�nes what constitutes a token, there is no need to repeat that infor-mation here.The interesting access routines are s str and sg next, where we rely on thestate invariant for guidance on (1) what to depend on at call invocation and(2) how to \clean up" just before call return. In s str(s), to satisfy the stateinvariant, we remove the leading blanks from s and append the sentinel to theend of s. In sg next, we return the current token and its type, where we relyon the fact that there are no leading blanks. Again we use the fact that theMIS already de�nes what constitutes a token and the type of a token. We alsoadvance cur to the next token in buf, if there is one; otherwise, we advance tothe leftmost null in buf.8.5.2 The absmach MIDThe abstract state for absmach consists of the integer variables acc and pc, andthe sequence mem. Similarly, the concrete state consists of the integer variablesacc and pc, and the integer array mem. The MID is shown in Figure 8.4. Thestate invariant restricts the range of acc, pc, and the values in mem. Because theabstract and concrete states are nearly identical and the mapping between thetwo is obvious, the other sections of the MID are omitted. For example, if wewould have added the access routine semantics, the entries would be identicalto those of the MIS. Such redundant entries are not worth maintaining, and wetherefore omit them.8.5.3 The load MIDThe load MIS (Figure 7.6) references the stdout environment variable, repre-senting the UNIX standard output, and the absmach abstract state variablemem. In the Module Implementation, the UNIX standard output is a�ected by



150 Chapter 8 MODULE INTERNAL DESIGNa call to printf and the absmach concrete state is updated by calls to am s mem.Therefore, there is no concrete state for load and the MID is omitted.8.5.4 The exec MIDThe execMIS (Figure 7.7) references the environment variables scn, representingthe terminal screen, and stdout, representing the UNIX standard output. Italso makes references to calls from absmach. The exec Module Implementationa�ects the terminal screen by calls to scndr access routines, and the UNIXstandard output by calls to printf. It also calls access routines from absmach.Therefore there is no concrete state for exec and the MID is omitted.8.5.5 The sham MIDsham is the SHAM Coordinator module. It has no access routines and its inter-face is speci�ed in the SHAM RS. It therefore has neither an MIS, nor an MID.8.6 ISHAM Module Internal Designs8.6.1 The keybdin MIDThe keybdin module reads input from the keyboard. There is no concrete statefor keybdin and it obtains access to the sequence of characters entered throughthe UNIX curses library. Therefore, there is no keybdin MID.8.6.2 The scngeom MIDBecause the scngeom module does not have an abstract state (Figure 7.9), noconcrete state is required. This is a special case of a module whose abstract andconcrete state are the same. Since there are no state variables, there is no stateinvariant. That is, for scngeom, the MID is omitted because it is identical tothe MIS.8.6.3 The scnstr MIDThe scnstr module provides write access to the terminal screen. The MIS (Fig-ure 7.10) de�nes three environment variables: scn represents the characters onthe screen, hlt indicates which characters on the screen are highlighted, and currepresents the cursor position. There are also three state variables that serve asbu�ers for these environment variables. Since the curses library provides all theservices required to implement scnstr, there is no concrete state in the ModuleImplementation. As a consequence, we omit the MID.



8.7. VERIFICATION 151� Audience. Module designer and implementor.� Prerequisites. An understanding of the MIS and of the C constructs for variabledeclaration.� Purpose. Describe the behavior of each access routine in terms of the concretestate.� Additional criteria.1. Well formed. The MID is well formed with respect to the format describedin Section 8.2. The state variables are de�ned in the C language and theMID de�nes a state invariant and an abstraction function.2. Comprehensible. The MID can be read and understood by the intendedaudience.3. Correct. The MID is correct with respect to the MIS.4. Feasible. The module can be implemented a�ordably.Figure 8.5 Module internal design criteria8.6.4 The scndr MIDThe scndr MIS de�nes the environment variable scn, representing the terminalscreen. In the Module Implementation, it can use the access routines of absmachto access the screen data, those of scngeom to obtain the screen positions, andthose of scnstr to apply the changes to the screen. Therefore, no concrete stateis needed, and we omit the MID.8.7 Veri�cation8.7.1 Work product criteriaThe criteria for an MID are shown in Figure 8.5. Note that the intended audiencedoes not include the module user; thus, the MID audience is usually much smallerthan the MIS audience. Since the MID is not executable, we can verify it onlyby inspection. Except for correctness, the \additional criteria" for an MID aresimilar to the ones for the MIS (see Section 7.7) and can be inspected in thesame way.With an MID, we can verify the correctness of a Module Implementation intwo steps. We verify �rst that the MID is correct with respect to the MIS andsecond that the Module Implementation is correct with respect to the MID. Inthis section, we discuss the �rst of these two steps.To verify that an MID is correct with respect to an MIS, the state invariantand abstraction function play important roles. We �rst verify that the stateinvariant holds in the same way that we verify that the state invariant holds foran MIS. Second, we verify that if we apply the abstraction function to the initial



152 Chapter 8 MODULE INTERNAL DESIGNconcrete state, we get the initial abstract state. Third, we verify that for eachconcrete state satisfying the state invariant, the operations of the access routineson the concrete state correspond to the same operations on the correspondingabstract state. After reviewing these steps in detail, we illustrate the techniqueson the stack MID.8.7.2 Maintaining the state invariantTo verify that the concrete state satis�es the state invariant after every call, we�rst verify that it is established by s init. Second, we verify that every otheraccess routine maintains the state invariant. That is, we assume that the stateinvariant holds before a call to an access routine, and we verify that it must alsohold after the call.8.7.3 Correctness of initial stateIn the following, we use A to denote the abstraction function. For simplicity, weassume that all the access routines are deterministic, but the following veri�ca-tion procedures can be extended to deal with non-deterministic MISs and MIDs[53]. To verify the correctness of the initial state, we must show that A appliedto the initial concrete state produces the initial abstract state.8.7.4 Access routine correctnessThe veri�cation procedures are speci�ed for set, get, and set-get routines.8.7.4.1 Set access routinesTo verify the correctness of a set access routine, we must verify the correctnessof the exceptions and the transition. For the exception behavior, we must verifythat, for every concrete state s that satis�es the state invariant, the MID speci�esan exception e for s if and only if the MIS speci�es the exception e for A(s).For the transition correctness of a set access routine call c, we must verifythat, for every concrete state s1, applying c to A(s1) yields the same abstractstate as �rst applying c to s1 and then applying A. More intuitively, what wemust verify is that �rst abstracting and then applying the transition operationis the same as �rst applying the transition and then abstracting. This intuitionis captured by the commuting diagram in Figure 8.6(a). In the diagram, weuse A:c to denote the transition for c in the MIS and C:c for the correspondingtransition in the MID. We must verify that this diagram commutes along thetwo paths beginning in the lower left and terminating in the upper right. Thatis, if we let s2 denote the state resulting from applying c to s1 and s3 the stateresulting from applying c to A(s1), then we must show that s3 = A(s2).In showing that the diagram commutes, we may make two assumptions.First, we may assume that the concrete state s satis�es the state invariant.



8.7. VERIFICATION 153A(s1) -A:c s3=A(s2)s1 -C:c s26A 6A(a) transition correctness
A(s)
s6A PPPPPqA:c
������1C:c A:v=C:v(b) output correctnessFigure 8.6 Transition and output commuting diagramsSecond, since there is no transition when c signals an exception for state s, wemay also assume that c does not signal an exception.8.7.4.2 Get access routinesFor a get access routine, we must verify the correctness of the exceptions andthe output. The veri�cation of the exceptions is the same as for a set accessroutine. The commuting diagram for output correctness of a get access routinec is shown in Figure 8.6(b). Here the intuition is that �rst abstracting andthen applying the output operation must yield the same output as applying theoutput operation directly. Thus we must verify that, for every concrete states, the output value C:v speci�ed by the MID is the same as the output valueA:v speci�ed by the MIS for A(s). Again, in verifying the output correctness,we may assume that s satis�es the state invariant and that c does not signal anexception.8.7.4.3 Set-get access routinesFor a set-get access routine, we must verify the correctness of the exceptions, thetransition, and the output. The veri�cation of the exceptions and the transitionare the same as for a set access routine, and the veri�cation of the output is thesame as for a get access routine.8.7.5 Veri�cation of stackThe semantics of the stack MIS is shown in Figure 7.1, and the stack MID isshown in Figure 8.1.8.7.5.1 Maintaining the state invariantWe �rst verify that the state invariant is maintained by showing that s initestablishes it, and that the other access routines maintain it. The state invariant



154 Chapter 8 MODULE INTERNAL DESIGNis siz 2 [0::PS MAXSIZ] and the transition for s init is siz := 0. So clearly,s init establishes the state invariant.For s push, the state transition for siz is siz := siz+1. If we assume thatthe state invariant, siz 2 [0::PS MAXSIZ], holds before the call, then the stateinvariant is satis�ed unless siz = PS MAXSIZ. But in that case s push signalsthe exception full, and there is no state transition. This shows that if the stateinvariant is satis�ed before a call to s push, then it is also satis�ed afterwards.For s pop, the state transition is siz := siz� 1. In this case, assuming thatthe state invariant holds before the call, the state invariant is satis�ed after thecall unless siz = 0. But this is exactly when s pop signals empty, in which casethere is no state transition.The other two access routines, g top and g siz, are get access routines andhave no state transitions. Therefore, if the state invariant is satis�ed before acall to these access routines, then it is also satis�ed after the call.8.7.5.2 Correctness of initial stateIn the initial concrete state, the value of siz is 0 and the value of stack isunrestricted. Since siz = 0, applying the abstraction function to this stateyields hi, the initial abstract state, as required.8.7.5.3 Access routine correctnessThe exception behavior for s push in the MIS isexceptions: exc := (jsj = PS MAXSIZ) ps full)and the exception behavior in the MID isexceptions: exc := (siz = PS MAXSIZ) ps full)Since the abstraction function speci�es that jsj = siz, the expression siz =PS MAXSIZ in the MID is equivalent to the expression jsj = PS MAXSIZ in theMIS. Therefore the exception behavior for s push is correct. For most accessroutines, as is the case here, the MIS and the MID exception sections have aconditional rule with the same number of components and the same right-handsides. This greatly simpli�es the proof of correctness, because all we need toshow is the equivalence of the corresponding left-hand sides (the conditions ofthe conditional rule), assuming the state invariant and the abstraction function.The commuting diagram for the transition correctness of s push is shown inFigure 8.7. We show the concrete state as a term of the form hhs0; : : : ; sM�1i; ni,where hs0; : : : ; sM�1i represents the contents of the array stack, n representsthe value of siz, and M is a shorthand for PS MAXSIZ.Recall that to verify the transition correctness, we must show that �rst ab-stracting and then applying the transition is the same as �rst applying the tran-sition and then abstracting. Since n is the value of siz, abstracting the concrete



8.7. VERIFICATION 155hs0; : : : ; sn�1i -s push(x) hs0; : : : ; sn�1; xihhs0; : : : ; sn�1; sn; : : : ; sM�1i; ni -s push(x) hhs0; : : : ; sn�1; x; : : : ; sM�1i; n+ 1i6A 6A
Figure 8.7 stack module internal design|s push transition correctnesshs0; : : : ; sn�2; sn�1i -s pop hs0; : : : ; sn�2ihhs0; : : : ; sn�2; sn�1; : : : ; sM�1i; ni -s pop hhs0; : : : ; sn�2; sn�1; : : : ; sM�1i; n� 1i6A 6A
Figure 8.8 stack module internal design|s pop transition correctnessstate �rst yields the abstract state hs0; : : : ; sn�1i and applying the transitionfor s push produces hs0; : : : ; sn�1; xi. Note that we rely on the state invarianthere, because if n does not fall in the range [0::PS MAXSIZ] then the abstractionfunction is unde�ned.Going the other way, we �rst apply the state transition and then abstract.Applying the MID transition �rst produces the concrete statehhs0; : : : ; sn�1; x; sn+1; : : : ; sM�1i; n+ 1iHere we use the state invariant and the fact that s push does not signal an excep-tion, so we know that n 2 [0::PS MAXSIZ�1] before the call to s push. Abstract-ing the above concrete state also produces the abstract state hs0; : : : ; sn�1; xi,and thus the transition for s push is correct.The exception correctness of s pop follows from the fact that siz = 0 inthe MID if and only if jsj = 0 in the MIS. Figure 8.8 shows the commutingdiagram for the transition correctness of s pop. Abstracting �rst and thenapplying the transition produces the abstract state hs0; : : : ; sn�2i. Applyingthe MID transition �rst produces hhs0; : : : ; sn�2; sn�1; : : : ; sM�1i; n � 1i; heren > 0 because we are assuming that s pop does not signal an exception. Sinceabstracting this concrete state also produces hs0; : : : ; sn�2i, the transition fors pop is correct.



156 Chapter 8 MODULE INTERNAL DESIGNhs0; : : : ; sn�1i
hhs0; : : : ; sn�1; : : : ; sM�1i; ni6A PPPPPPPPPPqg top�������*g top sn�1

Figure 8.9 stack module internal design|g top output correctnesshs0; : : : ; sn�1i
hhs0; : : : ; sn�1; : : : ; sM�1i; ni6A PPPPPPPPPPqg siz�������*g siz n

Figure 8.10 stack module internal design|g siz output correctnessThe exception behavior for g top is identical to s pop, and is therefore alsocorrect. The commuting diagram for the output correctness of g top is shownin Figure 8.9. Abstracting �rst yields the abstract state hs0; : : : ; sn�1i, andapplying the output function to this abstract state produces sn�1. Since sn�1is also the result of applying the output function directly to the concrete state,the output for g top is correct.The exception behavior for g siz is correct, since both the MID and the MISspecify that no exception is ever signaled. Figure 8.10 shows the commuting dia-gram for the output correctness of g siz. Abstracting �rst yields hs0; : : : ; sn�1iand applying the output function produces n, which is also the result of applyingthe output function directly to the concrete state.8.7.5.4 DiscussionNote that even for a simple module such as stack, it takes quite a bit of workto rigorously verify the correctness of the MID. In practice, we must verify atrates that are far higher than can be attained during a rigorous proof such asthe one above. Therefore, such a detailed veri�cation is only performed if there



8.9. BIBLIOGRAPHIC NOTES 157are serious doubts about the correctness of the MID. For example, it may bewarranted if several faults have been discovered in the MID.However, it is important to have a good understanding of the full veri�cationprocedures. Although the actual veri�cations are substantially abbreviated, theymust, in principle, be extensible to a rigorous proof.8.8 SummaryThe MID serves as an intermediate work product between the MIS and the Mod-ule Implementation. It speci�es the concrete state of the Module Implementationand the e�ect of each access routine in terms of this concrete state.Since the interface syntax of the MID is the same as in the MIS, it is notrepeated in the MID. The semantics of the MID follow the MSM format de-scribed in Section 3.8. In addition, the MID de�nes a state invariant and anabstraction function to clarify the choice of concrete state. The state invariantis a logical expression on the concrete state space that restricts the legal statesof the module. The abstraction function provides an interpretation of the le-gal concrete states by de�ning how each legal concrete state corresponds to anabstract state. The state invariant and the abstraction function also play animportant role in verifying that an MID is correct with respect to an MIS.Since the only di�erence between an MIS and an MID is the state space, thebene�ts from an MID are greatest when there are major di�erences between theabstract and concrete states. When the abstract and concrete states are verysimilar or when there is no concrete state, it may not be cost-e�ective to developand maintain the MID.8.9 Bibliographic NotesOur notion of MID is based on the module design document proposed by Parnas[1]. Hoare [75] is usually given credit for the key ideas of data re�nement, whichis the replacement of an abstract state by a concrete one. More recently, this ideahas been used extensively in the work on VDM [12] and Z [11]. The veri�cationprocedures for MIDs are based on the theory of modules developed by Gannon,Hamlet, and Mills [76]. Ho�man and Jones [53] adapted these ideas to theMIS and MID work products discussed in this text and extended the methodto handle non-determinism and exceptions. Similar veri�cation procedures alsoexist for VDM [12] and Z [77].





Chapter 9Module ImplementationExecutability is the essence of programming.9.1 IntroductionWhile the Module Implementation (MI) is perhaps the most important workproduct, it is also the one that is easiest to produce. The MI is importantbecause it is the work product that makes up the executable version of thesystem. Since the MI must be executable, machine readability is essential. Forthe other work products, human readability is the essential quality. However,with the other work products in place, it should be straightforward to constructan MI. The important design decisions have already been made in the RS, theMG, the MIS, and the MID.Programming is commonly considered as a trial and error process. However,�rst writing a program and then trying to remove its errors leaves us with thedi�cult task of deciding when we have removed the last error. As Linger et al.point out:Since there is no way to be certain that you have found the last error,your real opportunity to gain con�dence in a program is to never �ndthe �rst error. [3]Thus, it is the programmer's responsibility not to introduce any errors in the�rst place. It is not the tester's responsibility to remove all the errors that weremade by the programmer; testing is e�ective only as an independent check.Clearly, it is not reasonable to ask a programmer to write a program of severalhundred lines of code without any errors. However, by carefully decomposingthe system into modules, each access routine will typically consist of less thana page of code. In addition, we can implement an access routine without errorsonly if we know precisely what the access routine is supposed to do. This is159



160 Chapter 9 MODULE IMPLEMENTATIONvoid ps_s_push(x)int x;{ if (siz == PS_MAXSIZ)ps_full();return;}stack[siz++] = x;} Figure 9.1 stack module implementation|s pushexactly what the MID (or the MIS if the MID is omitted) tells us: it allows usto code to speci�cation.Section 9.2 de�nes the MI work product. The technique of stepwise re�ne-ment, which is the subject of Section 9.3, can be used to develop an MI from anMID in a series of re�nement steps. Examples from stack and symtbl are shown.The next two sections discuss the MIs of the BSHAM and ISHAM modules.Section 9.6 shows how to verify an MI in an inspection meeting; the testing ofMIs is the subject of the next chapter. While we discuss the MI of every SHAMmodule, we do not present every MI in full detail. The complete work productsmay be found in Appendix E.9.2 Work Product De�nition9.2.1 FormatThe format of the MI is dictated by the rules of the implementation language|the C language in our case. Thus, although the MI is also an MSM, we cannotfollow the MSM format described in Section 3.8. In addition, the state of theMI is already de�ned in the MID. Just as for the MIS and the MID, an MIsometimes makes use of local functions, types, and constants. In the MID, thelocal functions, types, and constants are used only for speci�cation purposes, sothat they need not appear in the MI. However, the same functions, types, andconstants might also simplify the MI, and as such they are often included in theMI.The concrete state for the stack module (see Figure 8.1) consists of an arrayof integers, stack, and the integer siz. Given this state, an implementation fors push is shown in Figure 9.1. Recall that we signal an exception by calling aC function with the same name as the exception (Section 7.2.3). Thus, s pushcalls ps full when siz = PS MAXSIZ.In addition to the access routines, an MI often de�nes the function g dump,implemented for debugging purposes. This function prints the concrete state of



9.2. WORK PRODUCT DEFINITION 161void ps_g_dump(){ int i;printf("siz=%d\n",siz);for (i = 0; i < siz; i++)printf("stack[%d]=%d\n",i,stack[i]);} Figure 9.2 stack module implementation|g dumpthe module in a suitable format. Figure 9.2 shows the implementation of g dumpfor stack. It prints the value of siz, and the �rst siz elements of the arraystack.9.2.2 Modules in CTo support modules in C, header �les declare the exported identi�ers of a module:the access routines, the exported constants and types, and the exception handlersfor the module. Note that the local functions, constants, and types are de�nedin the MI, and not in the header �le. We follow the convention that header �leshave the su�x .h; the header �les for all the SHAM modules are contained inAppendix C.Every MI that uses an identi�er exported from module M must import theheader �le for M with the #include preprocessor command. This includes theMI of M itself. In addition, every MI also imports the header �le system.h,which de�nes the system-wide constants and types for SHAM. For example, the�rst two lines of the stack MI are:#include "system.h"#include "stack.h"9.2.3 Code format rulesEach programmer typically has his or her own unique approach to spacing, com-menting, indenting, etc. If we allow each programmer to use his or her ownstyle, then the format of the MIs will vary widely between di�erent parts of thesystem, making them harder to read and maintain. In addition, programmerswill likely spend hours converting code to their style and arguing about what the\best" format is. Therefore, each software project should have a set of clearlyde�ned rules regarding programming style.The Code Format Rules for SHAM are shown in Appendix G. Since thereclearly is no \best" set of rules, these rules were chosen somewhat arbitrarily. It



162 Chapter 9 MODULE IMPLEMENTATIONvoid ps_empty(){ fprintf(sy_excfilp,"Exception ps_empty occurred\n");}void ps_full(){ fprintf(sy_excfilp,"Exception ps_full occurred\n");} Figure 9.3 stack|default exception handlersis not the rules themselves that are important; what is important is that theyare applied consistently.9.2.4 Default exception handlersIn SHAM, it is the responsibility of the user of module M to implement theexception handlers forM (see Section 7.2.3). Since for many applications simpleexception handlers su�ce, we provide default exception handlers for each mod-ule. This has the added advantage that, if a module is used in more than oneapplication, the same exception handlers can be used in every application.Figure 9.3 shows the default exception handlers for the two stack exceptions:empty and full. The default exception handlers write an appropriate messageto the globally de�ned �le sy excfilp. These default exception handlers areused in both BSHAM and ISHAM. In BSHAM, the �le pointer is set to stdout,the UNIX standard output. Using stdout does not work very well for ISHAM,since it repeatedly redraws the terminal screen. This means that if an exceptionmessage were printed to stdout, it could easily be \lost" between screen updates.Therefore, for ISHAM, sy excfilp directs the output to a �le: the one whosename is de�ned by the constant SY EXCFIL.9.3 Stepwise Re�nementThe technique of stepwise re�nement provides a systematic way for developingan MI from an MID [66]. With this technique, we gradually develop the MIthrough a sequence of re�nement steps. At each stage in the re�nement process,we have a complete description of the program, with a mix of notation from thespeci�cation and the implementation language. Each re�nement step decom-poses one or several speci�cation \statements" into more detailed statements ineither the speci�cation or the implementation language. We start this processwith the MID, which is de�ned in terms of the speci�cation language. We end



9.3. STEPWISE REFINEMENT 163ps s push(x):transition: stack[siz]; siz := x; siz + 1exceptions: exc := (siz = PS MAXSIZ ) ps full)Figure 9.4 stack module internal design|s pushvoid ps s push(x)int x;f if (/*siz = PS MAXSIZ*/) fps full();return;g/*stack[siz]; siz := x; siz+ 1*/g Figure 9.5 stack|�rst re�nement of s pushup with the MI, which is executable because it contains only statements fromthe implementation language.9.3.1 Example: stackAs an example, we show how we can obtain the implementation of s push, shownin Figure 9.1, by a stepwise re�nement of its speci�cation in the MID, shown inFigure 9.4. In the �rst re�nement step, we choose a control structure that will�rst check for an exception and then change the state only if no exception occurs.Recall that the transition section applies only if the exceptions section doesnot specify an exception. In C, we can implement this with an if-statement, andthe resulting \program" is shown in Figure 9.5. The parts of the \program" thatare not executable and that are still expressed in the speci�cation language areshown in comments. Figure 9.5 does not represent the only way in which we canre�ne the exception semantics. For example, Figure 9.6 shows another possiblere�nement. In this way, stepwise re�nement allows us to choose between variousimplementations, by making a design decision during each re�nement step.The program in Figure 9.5 still contains two statements in the speci�cationlanguage (as comments) and must be re�ned further. The expression/*siz = PS MAXSIZ*/is further re�ned tosiz == PS_MAXSIZ



164 Chapter 9 MODULE IMPLEMENTATIONvoid ps s push(x)int x;f if (/*siz = PS MAXSIZ*/)ps full();else /*stack[siz]; siz := x; siz + 1*/g Figure 9.6 stack|alternative �rst re�nement of s pushFinally, the statement/*stack[siz]; siz := x; siz+ 1*/is re�ned into the single C statementstack[siz++] = x;resulting in the implementation shown in Figure 9.1.The implementation of the other access routines for stack is straightforward,and can be derived in a similar way. The stack MI is so simple that the powerof stepwise re�nement is not apparent; with symtbl, the advantages are clearer.9.3.2 Example: symtblFigure 9.7 shows the concrete state, the local constants, and the local functionsof the symtbl MID, as well as the speci�cation of the access routine s add.The concrete state consists of an array tbl of symbol/location pairs, and theinteger tblcnt that represents the number of symbols currently stored. Thelocal function findsym searches for a symbol in the table; findsym(s) returnsthe index of s in the table, or NOTFOUND if s is not in the table.We now use stepwise re�nement to implement s add. As a �rst step, we re�nethe exception semantics, which produces the program shown in Figure 9.8. Thefurther re�nement of/*strlen(sym) > ST MAXSYMLEN*/and/*tblcnt = ST MAXSYMS*/into C is straightforward.To re�ne the expression/*findsym(sym) 6= NOTFOUND*/



9.3. STEPWISE REFINEMENT 165state variablesstruct fchar sym[ST MAXSYMLEN+1];int loc;g tbl[ST MAXSYMS];int tblcnt;access routine semantics...st s add(sym; loc):transition: tblcnt; tbl[tblcnt] := tblcnt+ 1; hsym; lociexceptions: exc := (jsymj > ST MAXSYMLEN ) st maxlenj findsym(sym) 6= NOTFOUND ) st exsymj tblcnt = ST MAXSYMS ) st full)...local constants#define NOTFOUND -1local functionsfindsym : string! integerfindsym(s) = ((9i 2 [0::tblcnt � 1])(s = tbl[i]:sym)) ij true) NOTFOUND)Figure 9.7 symtbl module internal design|s addvoid ps s add(sym,loc)char *sym;int loc;f if (/*strlen(sym) > ST MAXSYMLEN*/) fst maxlen();return;g else if (/*findsym(sym) 6= NOTFOUND*/) fst exsym();return;g else if (/*tblcnt = ST MAXSYMS*/) fst full();return;g/*tblcnt; tbl[tblcnt] := tblcnt + 1; hsym; loci*/g Figure 9.8 symtbl|re�nement of s add



166 Chapter 9 MODULE IMPLEMENTATIONwe have, as usual, several options. The �rst of these is to implement the functionfindsym as a local function in the MI. Recall, however, that local functionsin the MID are there only to simplify the speci�cation, and as such they donot have to be implemented. A second option is therefore to re�ne findsym,and to incorporate its implementation in s add. We prefer the �rst option,because findsym is also useful in the access routines g exsym, s loc, and g loc.Recognizing \shared operations" like findsym is an important part of stepwisere�nement, since it can greatly simplify the resulting MI. Implementing findsymin this case has the additional advantage that the implementation of s add closelyfollows its speci�cation in the MID, making it easy to verify the correctness ofs add. We therefore implement the local function findsym and the local constantNOTFOUND. The above statement is then simply re�ned tofindsym(sym) != NOTFOUNDThe last statement in s add that we must re�ne is/*tblcnt; tbl[tblcnt] := tblcnt+ 1; hsym; loci*/We �rst replace it by the three assignment statements/*tbl[tblcnt]:sym := sym*//*tbl[tblcnt]:loc := loc*//*tblcnt := tblcnt+ 1*/which can then be further re�ned tostrcpy(tbl[tblcnt].sym,sym);tbl[tblcnt].loc = loc;tblcnt++;Note that when re�ning a multiple assignment statement into more than onesingle assignment statement, the ordering of these statements must preserve themeaning of the multiple assignment statement.Figure 9.9 shows the complete implementation of s add that results from thisre�nement. Note that the correctness of this implementation depends upon thespeci�cation of findsym and is independent of the implementation for findsym.What remains is to implement findsym, whose speci�cation is given in theMID (Figure 9.7). The predicate (9i 2 [0::tblcnt � 1])(s = tbl[i]:sym) inthe speci�cation suggests that we search through the array tbl. One way toimplement such a search is with a for loop, which leads to the re�nement shownin Figure 9.10. The only remaining non-executable statement/*sym = tbl[i]:sym*/can then be re�ned to!strcmp(sym,tbl[i].sym)The re�nement of the other symtbl access routines is straightforward, andsome of them also use the local function findsym. Note that with findsym, thesymtbl MI is quite straightforward; only a single loop is needed.



9.3. STEPWISE REFINEMENT 167void st_s_add(sym,loc)char *sym;int loc;{ if (strlen(sym) > ST_MAXSYMLEN) {st_maxlen();return;} else if (findsym(sym) != NOTFOUND) {st_exsym();return;} else if (tblcnt == ST_MAXSYMS) {st_full();return;}strcpy(tbl[tblcnt].sym,sym);tbl[tblcnt].loc = loc;tblcnt++;} Figure 9.9 symtbl module implementation|s add9.3.3 DiscussionIn the preceding examples, we went through a lot of steps and trouble to comeup with fairly straightforward implementations. In practice, and in the follow-ing sections, many of the intermediate re�nement steps are skipped. However,it is important to know that, when things get complicated, we can fall backon stepwise re�nement to obtain|and explain|our implementation through asequence of re�nements.In the de�nition and the use of local functions, we use the idea of stepwisere�nement in a disciplined and consistent way. Every local function in an MImust have an explicit speci�cation. This holds for local functions that appear inthe MID, such as findsym, and also for local functions that are not de�ned inthe MID. This means that when we call a local function from an access routine,we determine the function's behavior from its speci�cation, not its implementa-tion. As a separate step, the local function is then implemented according toits speci�cation. This separation of speci�cation and implementation of localfunctions is a key application of separation of concerns, and it is the reason whystepwise re�nement scales up to larger programs.



168 Chapter 9 MODULE IMPLEMENTATIONvoid findsym(sym)char *sym;f int i;for (i = 0; i < tblcnt; i++) fif (/*sym = tbl[i]:sym*/)return(i);greturn(NOTFOUND);g Figure 9.10 symtbl|re�nement of findsym9.4 BSHAM Module Implementations9.4.1 The token MIFigure 9.11 shows the state variables and the state invariant sections of thetoken MID. The state consists of the array of characters buf to store the stringand the index cur to indicate the current character in the array. Recall that thetoken MID requires that (1) a sentinel blank character is stored after the lastcharacter in the string and (2) we skip over leading blanks so that we are alwaysplaced at the beginning of the next token (see Section 8.5.1). These decisionsare enforced by the third condition of the state invariant.As we noted for the MID, the state invariant guides the processing that hasto be performed by each access routine. This carries over to the MI. For example,the transition for s str is shown in Figure 9.11. This transition is implementedin s str by the code shown in Figure 9.12. Following the exception check, atwo-line while loop implements rmblanks. Then, if s has any non-blanks, thesentinel is added.The implementation of sg next is the most complicated part of the tokenMI.The purpose of sg next is to return the value and the type of the current tokenand to advance cur to the next token. To recognize the type of token, we usea simple FSM (see Section 3.7) with �ve states: START, ID, INT, ERR, and END.The initial state is START. The state ID indicates that the token recognized so faris an identi�er, INT that it is an integer, and ERR that it is neither an identi�ernor an integer. The inputs to the state machine are the characters in the arraybuf, starting with buf[cur]. Table 9.1 shows the state transitions, based on thetype of the current character, buf[cur]. We distinguish four types of characters:blank, numeric, alphabetic, and other. Note that for START there is no transitionde�ned for a blank character, because the state invariant guarantees that thiswill not happen.



9.4. BSHAM MODULE IMPLEMENTATIONS 169
state variableschar buf[TK MAXSTRLEN+2];int cur;state invariant1. buf[0::TK MAXSTRLEN + 1] contains a null.2. cur 2 [0::leftnull(buf)]3. cur < leftnull(buf)! (buf[cur] 6= ' ' ^ buf[leftnull(buf)� 1] = ' ')access routine semantics...tk s str(s):transition:buf := (there is a token in s[0::leftnull(s) � 1]) rmblanks(s) k " "j true) "")cur := 0exceptions: exc := (jsj > TK MAXSTRLEN ) tk maxlen)... Figure 9.11 token module internal design
void tk_s_str(s)char *s;{ if (strlen(s) > TK_MAXSTRLEN) {tk_maxlen();return;}while (*s == ' ') /*skip over leading blanks*/s++;strcpy(buf,s); /*copy in what remains*/if (*s != '\0')strcat(buf," "); /*add trailing blank as sentinel*/cur = 0;} Figure 9.12 token module implementation|s str



170 Chapter 9 MODULE IMPLEMENTATIONTable 9.1 token module implementation|state machineOld state buf[cur] New stateSTART alphabetic IDnumeric INTother ERRID blank ENDalphabetic or numeric IDother ERRINT blank ENDnumeric INTalphabetic or other ERRERR blank ENDalphabetic, numeric, or other ERRPart of the code that implements this state machine is shown in Figure 9.13.The state machine is implemented as a loop over a case statement; each iterationof the loop performs one state transition, and the loop terminates when the stateEND is reached. The case statement performs the state transition based on thecurrent state and the next input character. In sg next, the states are de�nedthrough an enumerated type, and the local variable state is used to maintainthe current state. After the state is initialized to START, the appropriate statetransitions are performed by the case statement inside the loop. For example,for the current state ID, the next input character is tested. If it is a blank, atransition to END is performed, the end of the token is marked, and the value ofthe token type is set in the typ �eld of the parameter valtyp. If the characteris either alphabetic or numeric (tested with the C library function isalnum),then there is no state transition. For other characters, the token is not a valididenti�er, and there is a transition to ERR.The above code recognizes the type of characters of the current token, butit does not check the length of the token. This is one of the things that is doneafter the loop; Figure 9.14 shows all the post-processing that is done after theloop in sg next. For tokens that are too long, the token type is set to TK BADTOK.There is also code to copy the value of the token to the val �eld of the parametervaltyp. Finally, there is code to restore the state invariant, by skipping overintermediate blanks and advancing to the next token, if there is one.



9.4. BSHAM MODULE IMPLEMENTATIONS 171enum {START,INT,ID,ERR,END} state; /*lexical analyzer state*/int tokstart,tokend,toklen;int i;...tokstart = cur; /*needed later to save value of token*/state = START;while (state != END) {switch (state) {case START:...case ID:if (buf[cur] == ' ') {state = END;tokend = cur-1;valtyp->typ = TK_ID;} else if (isalnum(buf[cur]))cur++;else {state = ERR;cur++;}break;case INT:...case ERR:...}} Figure 9.13 token module implementation|sg next9.4.2 The absmach MIIn the introduction to this chapter, we mention that it is the responsibility ofthe programmer to show that the MI is correct with respect to the MID. Thistask is greatly simpli�ed if the MI closely resembles the MID. It therefore paysto follow the MID as closely as possible, unless there are clear reasons not todo so (e�ciency might be one such reason). For example, by implementing thelocal function findsym, we were able to follow the symtbl MID quite closely inthe MI. The absmach MI provides a more striking example.The concrete state for absmach consists of the integers acc and pc, and thearray mem (see Figure 8.4). With this concrete state, the implementation of allaccess routines, except for sg exec, is trivial. The MIS for sg exec is shown inFigure 9.15. Since the abstract and concrete state for absmach are so similar,the speci�cations for the access routines from the MIS are not duplicated in the



172 Chapter 9 MODULE IMPLEMENTATION/*check maximum lengths*/switch (valtyp->typ) {case TK_ID:if (tokend-tokstart+1 > TK_MAXIDLEN)valtyp->typ = TK_BADTOK;break;case TK_INT:if (tokend-tokstart+1 > TK_MAXINTLEN)valtyp->typ = TK_BADTOK;break;}/*copy token to valtyp*/toklen = tokend-tokstart+1;for (i = 0; i < toklen; i++)valtyp->val[i] = buf[tokstart+i];valtyp->val[toklen] = '\0';/*skip over blanks preceding next token*/while (buf[cur] == ' ')cur++;Figure 9.14 token module implementation|after the loop in sg nextMID. That is why we use the sg exec speci�cation from the MIS instead ofthe MID. Since the Execution-phase Exception Table (Table 5.7) is non-trivial,it is implemented as the local function execexc, which returns the exceptionidenti�er speci�ed in the table, or AM NORMAL if no exception is speci�ed. Fig-ure 9.16 shows the execexc speci�cation and implementation. Since execexcis a local function in the MI but not in the MID, we include its speci�cationas a C comment in front of the implementation. For consistency, we do thesame for all local functions, even if their speci�cation appears in the MI. Thisimplementation closely follows Table 5.7, the SHAM Execution-phase ExceptionTable. To increase the resemblance, the macros SY OP0 and SY OP0, de�ned insystem.h, are used to mimic the types op0objectT and op1objectT from the RS.With the Execution-phase Exception Table, the implementation of execexc isstraightforward, which illustrates the value of a precise RS.The remainder of sg exec is also straightforward, and consists mainly of acase statement implementing the SHAM Language Semantics Table (Table 5.6).As in the RS, the HALT and PRINT instructions are dealt with separately.



9.4. BSHAM MODULE IMPLEMENTATIONS 173am sg exec:transition-output:(an error is speci�ed in the Exec. Phase Exception Table )out := the error identi�erj mem[pc] = SY HALT ) out := AM HALTj mem[pc] = SY PRINT ) out; pc := AM PRINT; pc+ 1j true) out := AM NORMALacc; pc;mem := values speci�ed in the RS LanguageSemantics Table)exceptions: noneFigure 9.15 absmach module interface speci�cation|sg exec9.4.3 The load MIFor modules with external interaction, such as load, the decisions on how thisinteraction is accomplished are often already made in the MID. For load, load-time exception messages are printed to stdout with the C function printf, andthe concrete state of absmach is updated by calls to am s mem (Section 8.5.3).In addition, load calls access routines from token to parse the lines of input.To simplify the MI, load contains three local functions. The �rst function,getinstr, returns the SHAM instruction represented by a character string.Speci�cally, the call getinstr(s; i) returns true and sets i to the instructionname represented by the string s if s represents a valid instruction, and it returnsfalse otherwise. The function excmsg prints the load-time exception messagespeci�ed by Table 5.4 when an exception has occurred. Finally, parse parsesan input line using calls on token. If Table 5.4 speci�es a load-time exceptionfor the current line, parse prints the appropriate exception message by callingexcmsg. Otherwise, parse returns the instruction name and its operand value,if there is an operand.With these three local functions, the implementation for sg load is straight-forward, and it closely follows the pseudocode shown in Figure 5.4.9.4.4 Version control through conditional compilationIn the MIS for exec we decided that there was going to be a single exec MI,supporting both the batch and interactive version of SHAM (Section 7.5.4). Wecould have created two versions, but this would mean maintaining two versionswith only small di�erences between them. By using the C preprocessor's con-ditional compilation features, we can maintain the two versions in a single �le,and, more importantly, the two versions can share much of the code. Similarly,there is only a single MI of the Coordinator module sham. We briey presentan overview of the conditional compilation features of C that we use in SHAM;these features are explained in detail in [78].



174 Chapter 9 MODULE IMPLEMENTATION/*out := (state invariant holds =>* (an exception is specified in Execution-phase Exception Table of RS* => the associated exception identifier* | true => AM_NORMAL))*/static am_stat execexc(){ sy_instr cmd;int op;if (SY_OP0(mem[pc]))return(AM_NORMAL);if (SY_OP1(mem[pc])) {cmd = (sy_instr)mem[pc];if (pc < AM_MEMSIZ-1) {op = mem[pc+1];if (cmd == SY_LOADCON)return(AM_NORMAL);/*we know that cmd != SY_LOADCON*/if (op >= 0 && op <= AM_MEMSIZ-1) {if (cmd == SY_ADD) {if (acc+mem[op] <= AM_MAXINT)return(AM_NORMAL);else return(AM_ARITHEXC);} else if (cmd == SY_SUBTRACT) {if (acc-mem[op] >= 0)return(AM_NORMAL);else return(AM_ARITHEXC);} elsereturn(AM_NORMAL);}/*we know that op not in shamaddrT*/return(AM_ADDREXC);}/*we know that pc == AM_MEMSIZ-1*/return(AM_NOOPEXC);}/*we know that mem[pc] not in objectT*/return(AM_OBJECTEXC);} Figure 9.16 absmach module implementation|execexc



9.4. BSHAM MODULE IMPLEMENTATIONS 175To compile either exec or sham, one of the two compile-time ags ISHAM orBSHAM must be de�ned. Depending upon whether a compile-time ag is set ornot, the C preprocessor can conditionally include or exclude code fragments forcompilation. For example, the code fragment#ifdef BSHAMstat = am_sg_exec();#endifcontains the preprocessor commands #ifdef BSHAM and #endif, and one Cstatement. The C statement is included in the code that is compiled if thecompile-time ag BSHAM is de�ned, and it is excluded otherwise. The other Cpreprocessor command we use in SHAM is#ifdef FLAG...#else...#endifwhere the statements between #else and #endif are compiled when the compile-time ag FLAG is not de�ned.9.4.5 The exec MIThe BSHAM version of exec interacts with the environment, by printing run-time exception messages to stdout, and with another module, absmach. Thelocal function excmsg returns, as a C string, the run-time exception messagescorresponding to an exception identi�er. This is similar to the excmsg localfunction in load, except that it returns the message as a string rather thanprinting it. With this design, the BSHAM and ISHAM versions of exec canuse the same excmsg function. Figure 9.17 shows the implementation of theBSHAM version of s exec. After initializing the absmach accumulator andprogram counter, it repeatedly calls am sg next to execute the next command,until either a run-time exception occurs or the HALT instruction is reached. Ifa run-time exception occurs, it prints the message returned by excmsg as its lastargument using the C function printf.9.4.6 The sham MIThere are also two versions of the sham MI. Since sham is the Coordinatormodule, it de�nes the function main, where execution begins when BSHAM isinvoked. The BSHAM version of main �rst checks the command-line argument,which should be the name of the �le with the SHAM source code. It attemptsto open this �le using the C function fopen; if fopen fails, sham prints an errormessage and exits. Otherwise, it initializes absmach, token, exec, and load,



176 Chapter 9 MODULE IMPLEMENTATIONvoid ex_s_exec(){ am_stat stat;char buf[80];am_s_acc(0);am_s_pc(0);stat = am_sg_exec();while (stat == AM_NORMAL || stat == AM_PRINT) {if (stat == AM_PRINT)printf("%d\n",am_g_acc());stat = am_sg_exec();}if (stat != AM_HALT) {errmsg(stat,am_g_pc(),buf);printf("%s\n",buf);}} Figure 9.17 exec module implementation|s execand loads the program by calling ld sg load. Finally, if there are no load-timeexceptions it executes the program by calling ex s exec. Note that most of thework is done by the other modules, and that the sham MI is straightforward.9.5 ISHAM Module ImplementationsThe ISHAM modules interact with the environment by reading characters fromthe keyboard and by providing formatted screen output. Both these tasks areperformed using the UNIX curses library.9.5.1 The keybdin MIThe keybdin module provides access to the keyboard, one character at a time,and also controls the echoing of these characters (Figure 7.8). The MI uses thefollowing functions from the curses library.� noecho: turns o� keyboard echoing.� cbreak: makes characters that are typed immediately available to theprogram. Normally, no output is available until the return key is pressed.� getch: reads a character from the keyboard.� echo: turns keyboard echoing on.



9.5. ISHAM MODULE IMPLEMENTATIONS 177� nocbreak: bu�ers characters and makes them available to the programafter a NEWLINE or RETURN is typed.With these functions, the keybdin MI is straightforward.9.5.2 The scngeom MIscngeom provides run-time access to the screen geometry of ISHAM and has nostate (Figure 7.9). The MI de�nes the local function legfld; legfld(f) returnstrue if f is a legal �eld identi�er and false otherwise. The MI also de�nesthe array fldtbl, which contains the row, column, and length for each screen�eld. With legfld and fldtbl, the implementations of the access routines forscngeom are straightforward.9.5.3 The scnstr MIscnstr provides bu�ered write access to the terminal screen. Fortunately, cursesautomatically bu�ers all the updates to the screen until the curses functionrefresh is called. This greatly simpli�es the scnstr MI. The only remainingchallenge is the code dealing with the highlighting of strings in s hlt. Withcurses, a string is highlighted by turning highlight mode on, writing the string,and turning highlight mode o�. Thus, to highlight a string currently displayed,that string's value must �rst be retrieved. Figure 9.18 shows the implementationof s hlt, where we have omitted the code that detects and signals exceptions.The local function instr returns, as a C string, the sequence of l charactersthat is currently displayed starting at row r and column c. To highlight thisstring (when f is true), we turn on the curses highlighting by calling standout,move the cursor to the appropriate position on the screen with move, display thestring using addstr, and turn o� the highlighting with standend. To displaythe string without highlighting (f is false), we �rst move the cursor, and thencopy the string while the curses highlighting is turned o� (the default).9.5.4 The scndr MIThe scndr module updates the terminal screen so that the values on the screencorrespond to the ones stored by absmach. Although the MI has to deal withsome technical details, the underlying idea behind it is quite simple:1. For a �eld f , use scngeom to get the position on the screen of f .2. For a �xed �eld, use scngeom to obtain its value; for a varying �eld, useabsmach to obtain its current value.3. Use scnstr to display the value in the correct position.



178 Chapter 9 MODULE IMPLEMENTATIONvoid ss_s_hlt(r,c,l,f)int r,c,l,f;{ char s[SS_NUMCOL+1];...if (l > 0) {instr(r,c,l,s);if (f) {standout();move(r,c);addstr(s);standend();} else {move(r,c);addstr(s);}}} Figure 9.18 scnstr module implementation|s hltTo handle the details, the local function prtcon prints out the initial value fora �xed screen �eld, ljust left-justi�es a string �eld by padding it to the rightwith blanks, and rjust right-justi�es a string. Finally, the FLD macro, de�nedby#define FLD(f,t,r,c) (f.nam = t, f.row = r, f.col = c)simpli�es the assignment of values to a screen �eld.9.5.5 The exec MIThere are two versions of the exec MI; the BSHAM version was discussed inSection 9.4.5. The major di�erence between the two versions is the loop thatcontrols the execution in s exec. Figure 9.19 shows this loop for the ISHAMversion. This code closely follows the pseudocode in the execution FSM in theISHAM RS (Figure 5.11). Characters are read from the keyboard by callingki sg next, a single SHAM instruction is executed by calling am sg next, andscreen �elds are updated by calling access routines from scndr. To control thehighlighting of the current instruction, the memory location of the old instructionis saved in the variable oldpc before am sg next is called. After the successfulexecution of an instruction, sd s hlt is used to turn o� the highlighting of theold instruction and to turn on the highlighting for the new instruction.



9.6. VERIFICATION 179ch = ki_sg_next();while (ch != EXIT) {if (ch == STEP) {oldpc = am_g_pc();stat = am_sg_exec();if (stat != AM_PRINT && stat != AM_NORMAL &&stat != AM_HALT) {excmsg(stat,am_g_pc(),buf);sd_s_msg(buf);} else if (stat == AM_HALT) {sd_s_msg("HALT instruction reached");} else {/*update screen*/sd_s_msg("");if (stat == AM_PRINT)sd_s_prt(am_g_acc());sd_s_mem();sd_s_acc();sd_s_pc();/*update highlighting of cursor*/sd_s_hlt(oldpc,0);sd_s_hlt(am_g_pc(),1);}} elsesd_s_msg("Illegal keyboard entry: type 's' or 'e'.");ch = ki_sg_next();} Figure 9.19 exec module implementation|loop for s exec9.5.6 The sham MIThere are also two versions of the MI of sham, the SHAM Coordinator mod-ule. The two versions are very similar, except that the ISHAM version containsadditional code to initialize and terminate curses and the keyboard and screenhandling modules. The only other di�erence is that the BSHAM version sets the�le pointer for exception messages to stdout, and the ISHAM version sets it toSY EXCFIL, as discussed in Section 9.2.4.9.6 Veri�cation9.6.1 Work product criteriaFigure 9.20 shows the inspection criteria for an MI. In Figure 9.20 and in theremainder of this section, we assume that every module has an MID. If the MID



180 Chapter 9 MODULE IMPLEMENTATION� Audience. Module implementor and tester.� Prerequisites. An understanding of the MID and the implementation program-ming language.� Purpose. Implement the module so that it satis�es the MID.� Additional criteria.1. Well formed. Satis�es the Code Format Rules shown in Appendix G. TheMI includes a set of default exception handlers, providing trivial exceptionreporting.2. Comprehensible. The MI can be read and understood by the intendedaudience.3. Reliable. No fatal errors will occur at run time.4. Testable. The module can be tested a�ordably|there are no unjusti�ablecontrollability or observability problems.Figure 9.20 Module implementation criteriais omitted, then we assume that the MIS plays the role of the MID. Since thetesting of an MI is the subject of the next chapter, we discuss only the veri�cationof an MI by inspection here. In Section 9.2, we discussed the Code Format Rulesand the default exception handlers. In this section, we focus on the correctnessof the MI: how we verify that an MI satis�es an MID and how we inspect forthe absence of fatal run-time errors.9.6.2 MI satis�es module internal designVerifying that an MI satis�es an MID is often simpler than verifying that anMID satis�es an MIS, because the MI and the MID share the same concretestate.To verify the correctness of an MI, we separate the veri�cation of local func-tions from the veri�cation of access routines. As explained in Section 9.3, eachlocal function has a speci�cation. This speci�cation is used in the veri�cation ofthe access routines, without reference to the implementation of the local func-tion. The correctness of the implementation of the local function with respectto its speci�cation is then veri�ed separately. In Section 9.3.2, we illustratedthis veri�cation method with the local function findsym and the access routines add of symtbl.To verify the access routines, there are di�erent procedures for set, get, andset-get access routines.



9.6. VERIFICATION 181(a) Module Internal Designps s push(x):transition: stack[siz]; siz := x; siz + 1exceptions: exc := (siz = PS MAXSIZ ) ps full)(b) Module Implementationvoid ps_s_push(x)int x;{ if (siz == PS_MAXSIZ)ps_full();return;}stack[siz++] = x;} Figure 9.21 stack|s push internal design and implementation9.6.2.1 Set access routinesTo verify the correctness of a set access routine, we must verify the correctnessof the exceptions and the transition. For the exceptions, we verify that theMI signals an exception e if and only if the MID speci�es the exception e. Inaddition, we check that when an exception is signaled there is no change in state.For the transition, we verify that, if no exception is signaled, the MI changes thestate according to the MID.As an example, Figure 9.21 shows the MID and the MI of the stack accessroutine s push. Clearly the MI signals full if and only if the MID does. Also,the return immediately after the call to the exception handler ensures that thereis no change of state when full is signaled. The correctness argument for thetransition is also straightforward.9.6.2.2 Get access routinesFor a get access routine, we must verify the correctness of the exceptions andthe output. For the exceptions, we verify that the MI signals an exception e ifand only if the MID speci�es the exception e. We also verify that the MI returnsa value of the correct type when an exception is signaled. For the output, weverify that the MI returns the value that is speci�ed in the MID.Figure 9.22 shows the MID and the MI of the stack access routine g top.It is easy to verify that the exception behavior is correct and that when the MIsignals empty, it returns 0, a value of type int. The output speci�ed in the MIDand the value returned in the MI are identical and so the output is also correct.



182 Chapter 9 MODULE IMPLEMENTATION(a) Module Internal Designps g top:output: out := stack[siz� 1]exceptions: exc := (siz = 0) ps empty)(b) Module Implementationint ps_g_top(){ if (siz == 0)ps_empty();return(0);}return(stack[siz-1]);} Figure 9.22 stack|g top internal design and implementation9.6.2.3 Set-get access routinesFor a set-get access routine, we must verify the correctness of the exceptions,the transition, and the output. For the exceptions, we verify that the MI signalsthe exceptions speci�ed by the MID, that the MI does not change the concretestate when an exception is signaled, and that it returns a value of the correcttype. The veri�cation of the transition is the same as for a set access routine,and the veri�cation of the output is the same as for a get access routine.9.6.3 Absence of fatal errorsThere are several types of run-time errors that occur regularly and that havefatal consequences on the execution of an MI. A well-known example is thedivide-by-zero error, which occurs when the divisor in a division is zero. Theregular occurrence and the severe consequences of such errors warrant that weverify, on a line by line basis, that these errors cannot occur. It is easy to verifythat there is no division by zero in SHAM, since there is no division at all. Wediscuss the type of errors that do need to be checked in SHAM, together withsome examples.Subscript out of range. For an array of size n, every time the array is accessed,we verify that its subscript falls between 0 and n � 1. For example, the arraystack is accessed in the statementstack[siz++] = x;



9.7. SUMMARY 183in the implementation of s push of stack (Figure 9.1). We must verify that sizlies between 0 and PS MAXSIZ� 1. The state invariant for stack,siz 2 [0::PS MAXSIZ]guarantees that siz falls between 0 and PS MAXSIZ. Moreover, s push signalsan exception when siz = PS MAXSIZ, and the above statement is only executedwhen s push does not signal an exception. Therefore siz lies between 0 andPS MAXSIZ� 1 when the above statement is executed.It is quite common that the state invariant plays a key role in showing theabsence of run-time errors. This is another reason why it pays to make the stateinvariant as strong as possible.Illegal pointer use. Another common source of problems is when a pointerhas gone astray (sometimes referred to as a dangling pointer). An example ofpointer use in SHAM is in the access routine sg next in token. In this case,the pointer valtyp is passed as a parameter to sg next and used to return theoutput. In sg next, we assume that space is allocated and that the pointer isset by the caller. That this is the case must then be veri�ed whenever sg nextis called. In SHAM, sg next is called twice from the local function parse inload. Both times the address of a local variable is passed as a parameter; thus,the space is allocated and the pointer is set correctly.Variable used before it is de�ned. It is typically straightforward to verify thatevery variable is de�ned before it is used. For example, the variable i in the localfunction findsym in symtbl is set in the �rst part of the for-statement, before itis used in the body.Endless loop. Although it can be quite complicated in general to show thata loop terminates, the loops in SHAM are so simple that they do not pose anyproblems. Consider the for-statementfor (i = 0; i < tblcnt; i++) {if (!strcmp(sym,tbl[i].sym))return(i);}in the local function findsym in symtbl. The value of i is incremented at the endof each iteration of the loop, and neither the value of i nor the value of tblcntis changed in the body of the loop. The state invariant for symtbl (Figure 8.2)implies that tblcnt 2 [0::ST MAXSYMS]. Since i starts out at 0, it must eventuallyequal tblcnt, at which time i < tblcnt becomes false and the loop terminates.9.7 SummaryThe MI is a critically important work product because it is, after compilation, theprimary product delivered to the customer. However, the other work products



184 Chapter 9 MODULE IMPLEMENTATIONgreatly simplify the MI development. If the system is carefully decomposed intomodules, each of which is then precisely speci�ed in an MIS and an MID, thenwe can code to speci�cation in the MI.Although the MI is an MSM, the format of the MI is restricted by the im-plementation language chosen and we cannot follow the MSM format describedin Section 3.8. However, a set of Code Format Rules is used to ensure that auniform coding style is followed throughout the system.In some cases, it is straightforward to write a correct MI from the MID,by closely mimicking the speci�cation in our implementation. When it is notstraightforward to implement a module, stepwise re�nement can be used to de-velop the MI through a sequence of re�nement steps. Each re�nement in thesequence represents a (partially) completed implementation in which speci�ca-tion fragments are gradually replaced by implementation fragments. The processterminates when the entire program is expressed in the implementation language.To verify the correctness of an MI by inspection, we verify that an MI satis�esan MID and we inspect for the absence of fatal run-time errors. To facilitate theveri�cation and to support stepwise re�nement, every local function in the MIhas an explicit speci�cation. In the veri�cation of an access routine that usesa local function, the speci�cation of the local function is used to determine itsbehavior. As a separate step, we verify that the local function is implementedaccording to its speci�cation.9.8 Bibliographic NotesThe technique of stepwise re�nement was �rst proposed by Wirth [66]; since thenit has received considerable attention in the literature [3, 62]. Parnas [67] pro-vides a comparison between stepwise re�nement and information hiding. Fagan[41] introduced inspections as a method for verifying software. Our use of inspec-tion for the absence of fatal errors is inspired by Fagan's inspection checklists.Russell [35] reports on the industrial application of inspections. More formalapproaches for showing the correctness of implementations have been proposedby Hoare [79], Dijkstra [9], Gries [80], and, more recently, Morgan [81] and manyothers.



Chapter 10TestingRedundancy is the essence of testing.10.1 IntroductionAt this point, we encourage the reader to review Section 2.4.10.1.1 Systematic testingIt is common practice to ignore testing until after implementation, and to discardthe tests shortly after acceptance of the software. This ad hoc approach totesting is ine�ective: because the testing is developed too late to inuence designdecisions, the resulting software is often hard to test. This approach to testingis also expensive, because the testing is not reused during maintenance.A systematic approach to testing requires that the testing be� planned : to permit design for testability,� documented : so that the test cases can easily be understood and the ade-quacy of the test cases can be evaluated, and� maintained : so that the test cases can be executed after every change tothe software.To perform systematic testing, we maintain two work products for each modulein SHAM: the Test Plan (TP) describes the strategy for selecting and executingthe tests, and the Test Implementation (TI) implements the TP.When designing test cases, it is important to keep in mind Dijkstra's Lawof testing (see Section 2.4): \program testing can be used to show the presenceof bugs, but never their absence" [36]. This means that the focus of testingshould be to detect program errors, not to show that the program is free oferrors. Although this di�erence is a subtle and mostly psychological one, its185



186 Chapter 10 TESTINGconsequences are important. It means we should design test cases so that theyare likely to expose errors.Despite the limitations of testing, it is important as an independent check oncode that has been carefully designed and inspected.10.1.2 Testing tasksWe distinguish six testing tasks.1. Build the test harness.2. Generate the test inputs.3. Determine the expected outputs for each of the test inputs.4. Execute the test cases, monitoring the behavior of the program.5. Compare the actual outputs to the expected outputs.6. Evaluate the test results and decide whether the program is ready to beput into production.Note that the last three steps incur costs every test run. As a result, to reducethe overall cost of testing, it is advantageous to automate these steps as muchas possible.10.1.3 OverviewIn Section 10.2, we discuss the purpose and contents of a TP and a TI. This isfollowed by a discussion of the distinction between system and module testing,and an explanation of why module testing is important. In the next section,we describe our method for selecting test inputs, based on functional testing.Section 10.5 describes the PGMGEN testing tool and illustrates it with the TIs ofstack and symtbl. The design of a system has a major inuence on the ease withwhich the modules in the system can be tested, and design for testability is thesubject of Section 10.6. Sections 10.7 and 10.8 discuss the testing of the BSHAMand the ISHAM modules. Although module testing is important, we cannotignore system testing; the SHAM system testing is discussed in Section 10.9. InSection 10.10, we review the work product criteria and the veri�cation proceduresfor a TP and a TI. While we discuss the testing of every SHAM module, we donot present every TP and TI in full detail. The complete work products may befound in Appendix F.



10.2. WORK PRODUCT DEFINITION 18710.2 Work Product De�nition10.2.1 Test planThe TP for module M is intended for those considering running or modifyingthe testing of M . It serves as a speci�cation for the TI for M : it describes thestrategy used for selecting test cases and for executing these test cases.A TP contains four required sections.� assumptions: de�nes any assumptions, not contained in the MIS, onwhich the testing depends.� test environment: describes the environment, such as test sca�olding,in which the testing is performed.� test case selection strategy: describes how test cases are selected.� test implementation strategy: describes the key aspects of the TI.In addition, the considerations section is sometimes used for information thatdoes not �t in any of the required sections.10.2.2 Test implementationThe TI for module M implements the TP for M as simply and inexpensively aspossible. The TI includes the test sca�olding, such as drivers and stubs, the testdata �les, and the procedures, both manual and automated, required to executethe tests. The SHAM modules with a call-based interface contain at least aninteractive or a batch driver, and these modules often contain both. Typically,the interactive driver prompts the user for an access routine name and parametervalues, invokes the access routine and, for a get call, displays the return value.The batch driver, on the other hand, typically contains a large number of testcases, and it is automated so that it can easily be run after every change to themodule.Part of the interactive test driver for the stack module is shown in Fig-ure 10.1. A constant is de�ned for each access routine, and main contains a loopthat repeatedly prompts the user to select an access routine using the functionnextcall. The case statement inside the loop prompts the user for the param-eters, if any, of the access routine, and invokes the access routine. For example,the function readint prompts the user for an integer parameter. For a get call,the value returned by the call is printed. The interactive driver also providesaccess to the routine g dump, which is implemented for debugging purposes anddisplays the concrete module state (see Section 9.2).The interactive test drivers are convenient for executing small numbers oftest cases and for debugging, where the behavior of one test case determineswhat other test cases are interesting. However, thorough and systematic moduletesting requires that large numbers of test cases are executed after every change



188 Chapter 10 TESTING#define QUIT 0#define S_INIT 1#define S_PUSH 2#define S_POP 3#define G_TOP 4#define G_DEPTH 5#define G_DUMP 6...main(){ int reply,i;while ((reply=nextcall()) != QUIT) {switch(reply) {case S_INIT:ps_s_init();break;case S_PUSH:i = readint("Enter element:");ps_s_push(i);break;case S_POP:ps_s_pop();break;case G_TOP:i = ps_g_top();printf("returns %d\n",i);break;case G_DEPTH:i = ps_g_depth();printf("returns %d\n",i);break;case G_DUMP:ps_g_dump();break;}}return(0);} Figure 10.1 stack interactive driver|main



10.3. MODULE AND SYSTEM TESTING 189to the module. Executing these with the interactive drivers would be a tediousand error-prone task, and automation is desirable. We automate those aspectsof testing that are most tedious and repetitive: the tedious aspects because theyare typically easiest to automate, and the repetitive tasks because the payo� ofautomation will be highest for those tasks. We do not attempt to automate thosesteps where manual approaches are cost-e�ective, or steps where it is unclear howwe can automate. In particular, we do not automate the selection of test inputs,but we do automate the execution of the test cases, and the comparison of actualwith expected behavior.To automate the testing, most of the modules in SHAM contain a batchdriver. For many of the modules, we use the PGMGEN test-driver generationtool to generate the batch driver. For the other modules, we use customizedbatch drivers.10.3 Module and System TestingDue to a lack of controllability and observability, it is hard to test a module Mwhen it is installed in a production system. M's access routines are often notdirectly accessible. IfM is a general-purpose module, some of its access routinesmay not be called at all in a particular production system. For example, ifSHAM works as intended, none of the exception handlers will ever be called.Thus it is impossible to test the exception handlers using the production codeof SHAM. To test a module thoroughly, we need to test it in isolation from itsproduction environment.While it is important to test each module in isolation, we also need to performintegration and system testing. With integration testing, we test combinationsof modules that can be tested as single subsystems. Finally, we need to test theentire system. The extent of integration and system testing depends on the sizeof the system, the reliability requirements, and the amount of module testingthat has been performed.10.3.1 Top-down testingIntegration testing can be performed top-down or bottom-up. In top-down testing,we start by testing a top-level module using stubs, and gradually replace thestubs by production code. Although we can use stubs for some access routinesof a module and production code for others, typically we use stubs for all or noneof the access routines of a module. Therefore, in the following, when we refer tostubs for a module M , we mean stubs for all the access routines of M .An example of top-down testing of BSHAM is shown in Table 10.1, where thets represent various stages in the progression of testing. We start by testing thesham coordinator using stubs for the other modules. After this we can proceedin several ways. In this case, we replace the stubs for load and token by theirMIs. We could have replaced only load by its MI, but it is hard to test load



190 Chapter 10 TESTINGTable 10.1 Top-down testing of BSHAMmodule t1 t2 t3 t4sham MI MI MI MIload stubs MI MI MIexec stubs stubs stubs MItoken stubs MI MI MIabsmach stubs stubs MI MITable 10.2 Bottom-up testing of BSHAMmodule t1 t2 t3sham not used not used MIload not used MI MIexec not used MI MItoken MI MI MIabsmach MI MI MIthoroughly using stubs for token. At the next stage, we use the MI for absmach,and �nally we replace the stubs for exec by the MI.10.3.2 Bottom-up testingIn bottom-up testing, we �rst test low-level modules using test drivers, and grad-ually we replace the drivers by higher-level modules. An example of how wecould test BSHAM with bottom-up testing is shown in Table 10.2. In bottom-up testing, we �rst test low-level modules. We test token and absmach usingdrivers. Note that we can test these in either order, or even in parallel. We thentest load and exec using drivers and the MIs for token and absmach. Again,load and exec can be tested in either order or in parallel. Finally, we test thesham Coordinator module using the MIs for all other modules.10.3.3 Top-down versus bottom-up testingOne advantage of top-down testing is the early availability of an executable pro-gram for the end user, so that he or she can give feedback as soon as testing isstarted. Another advantage is that integration testing occurs early in the test-ing, so that aws in the interface design can be detected as early as possible.The major disadvantages of top-down testing are (1) that observability and con-trollability are typically poor when testing the lower-level modules and (2) thatthe cost of developing and maintaining the stubs is high. Although simple stubs



10.4. TEST CASE SELECTION 191are easy to generate, they provide very little support for thorough testing. Moresophisticated stubs are expensive to develop.The advantage of bottom-up testing is that it provides better controllabilityand observability than top-down testing. A disadvantage of bottom-up testingis the cost of developing and maintaining the test drivers. Another disadvantageis that we cannot demonstrate an executable to the end user until we haveimplemented all the lower-level modules.In testing SHAM, we use a mixture of top-down and bottom-up testing. Toimprove controllability and observability we test the standalone modules usingtest drivers. For the other modules, we use a mixture of test sca�olding and pro-duction code, where the critical tradeo� is between the bene�ts realized throughisolation, and the cost of developing and maintaining the test sca�olding.10.4 Test Case SelectionWe describe two methods for selecting test cases: functional testing and struc-tural testing. With functional testing we base our tests primarily on the speci�-cation of the module. With structural testing we base our tests on the internalstructure of the code implementing the module. Finally, we describe our ap-proach for selecting test cases, which uses functional testing to select test casesand structural analysis as a cross-check on their adequacy.10.4.1 Functional testingFunctional testing provides us with a systematic approach for choosing specialvalues for test cases. Consider an access routine f(p1; :::; pn). For each pi, wechoose a set Si of special values and test f on every tuple in S1 � ::: � Sn.The choice of special values is determined by the parameter types and, in somecases, the implementation of the access routine. The special values include bothnormal-case and exceptional values for each parameter. In some cases, there aredependencies between the sets. For example, a value for p1 may be special onlyfor certain p2 values.In addition to choosing special values for each parameter of each access rou-tine, we also choose special values for the internal module state. However,we need to consider only normal-case values for the module state, because theexception-detection code should prevent exceptional values.To illustrate the choice of special values, we present two heuristics. Theinterval rule applies to an integer parameter restricted to an interval [L::U ].For normal-case testing, at least three special values are chosen: the boundarypoints L and U , and at least one value interior to [L::U ]. For exception testing,special values are chosen on the boundary and interior points of (�1::L � 1]and [U + 1::1). Thus, for an integer parameter restricted to [1::100], we mightchoose the following special values: f�1000; 0; 1; 50; 100; 101; 1000g. Sometimeswe can apply the interval rule indirectly. For example, for the stack module,



192 Chapter 10 TESTINGthe stack size is restricted to the interval [0::PS MAXSIZ], and thus we test it foran empty stack, a stack of size PS MAXSIZ, and a stack with some, but less thanPS MAXSIZ, integers.The second heuristic applies to a parameter with an enumerated type. If thenumber of elements in the enumerated type is small, we test the parameter forevery value in the enumerated type. For example, for the token module, sincethere are only three types of tokens, we include test cases for all of these. Ifexhaustive testing is too costly, we divide the elements into classes of \similar"ones and select at least one value from each class. For example, for an ASCII-character parameter we might include one alphabetic character, one digit, onepunctuation mark, and one non-printable character. Similar heuristics can beapplied to choose special values for other parameter types.Now that we know how to choose special values for individual parameters, letus see how to combine these to come up with a set of test cases for access routines.Consider an access routine f(p1; p2) with two parameters. Let us assume thatp1 is an integer restricted to the interval [1::100], and that p2 belongs to theenumerated type fred; green; blueg. A suitable set of normal-case values for p1is f1; 50; 100g, and a suitable set of exceptional values is f�1000; 0; 101; 1000g.Since the enumerated type for p2 contains only three values, we include all ofthese. There are no exceptional values for p2, since we can use the compiler toensure that f is always called with a value belonging to the enumerated type.To test f , we use all combinations of special values for both p1 and p2. Since p1has 3 + 4 = 7 special values and p2 has 3 special values, we should test f for all21 combinations of these.Thus, ignoring special values for the module state, a simple access routinesuch as the one above requires 21 test cases. This is a characteristic of ourapproach to functional testing: it leads to a large number of test cases. It thusappears that automated support is essential to perform this style of functionaltesting. Fortunately, automation is feasible because the large number of testcases result from simple combinations.10.4.2 Structural testingWith structural testing we select test cases based on the internal structure ofthe program. The motivation for structural testing is that we want to exerciseor \cover" as many parts of the program as possible. We select our test cases sothat a certain aspect of the source code is covered. We consider three types ofcoverage for structural testing: statement, branch, and path coverage.The simplest form of coverage is statement coverage, where we select testcases so that every statement in the program is executed at least once. Considerthe C function tst shown in Figure 10.2. To achieve statement coverage fortst a single test case su�ces; for example, tst(2) will do. In the following,we abbreviate a set of test cases for tst by the set of parameter values. Forexample, the above test set is represented by the set f2g.



10.4. TEST CASE SELECTION 193void tst(x)int x;{ if (x > 0)pos = pos+1;if (x % 2 == 0)even = even+1;return;} Figure 10.2 Implementation of tstWith branch coverage, we require that the set of test cases execute everybranch in the program at least once. That is, every decision in the program hasto evaluate to true and false at least once. For tst, we need at least two testcases to achieve branch coverage, for example, f�1; 2g. For �1 both decisionsin tst evaluate to false, and for 2 both evaluate to true.A path of control ow through a program is feasible if there exist values forthe parameters of the program that exercise that path. With path coverage, werequire that the set of test cases execute every feasible path through a programat least once. Since there are two decisions in tst, there are four paths of controlow through it, all of which are feasible. The test set f�2;�1; 1; 2g achieves pathcoverage.Unfortunately, path coverage is rarely practical. In programs with loops, thenumber of feasible paths is often in�nite, and even when it is not, typically thenumber is so large that path coverage is impractical. Moreover, it is in generalundecidable whether or not a path through a program is feasible. In practice,most programs contain many infeasible paths. To address these shortcomings,variations on path coverage have been proposed. However, all forms of structuralcoverage, including these proposals, su�er from the following weaknesses:� Structural coverage is not su�cient. Many simple faults are not detectedeven by path testing, the most demanding coverage measure. For example,consider the faulty implementation of tst in Figure 10.3. There are twofaults in this program: the �rst condition should be x > 0, and the secondif-statement is omitted. Yet, the test set f�1; 1g achieves path coverage,and the program behaves correctly for this test set. This indicates tworeasons why structural coverage alone is not su�cient: it is not suited fordetecting missing functionality such as the second if-statement, and it doesnot select special values that should be tested, such as 0 in the case of tst.� Insu�cient automated support. Although tools exist for measuring struc-tural coverage, typically they can measure only statement and branch cov-erage. For example, the UNIX utility tcov measures statement coverage.



194 Chapter 10 TESTINGvoid tst(x)int x;{ if (x >= 0)pos = pos+1;return;} Figure 10.3 Faulty implementation of tstBuilding a tool for measuring path presents considerable problems. First,since the number of paths is typically in�nite or very large, there is theproblem of presenting large volumes of data to the tester. Second, sincethere is no general way of detecting which paths are feasible, many of thepaths will never be executed. Discovering which ones are feasible wouldhave to be left to the tester. Third, there is the problem of displaying, inan understandable manner, an arbitrary path through a program.10.4.3 Our approachIn the preceding sections we explained that1. functional testing provides a systematic approach to test case selection thatcan be partially automated, and2. structural testing provides little or no guidance with the selection of testcases, but statement coverage can be measured easily for a given set of testcases.Therefore, our approach to testing uses functional testing for the selection of testcases and statement coverage analysis as a cross-check on their adequacy.In particular, to select test cases for module M , we �rst consider M 's MIS.Based on the MIS, we use functional testing to select special values for the accessroutine parameters and the module state. For the access routine parameters, weselect normal-case and exceptional values; for the module state we select onlynormal-case values. We then consider M 's MID and MI to see if there are anyother special values, not suggested by the MIS, that we should test for. Finally,when executing the test cases, we use the UNIX utility tcov to measure thestatement coverage achieved by our test cases. The details of tcov are discussedin Section 10.10. We require that our test cases achieve 100 percent statementcoverage. We view this 100 percent statement coverage as a necessary, but nota su�cient, condition for a test set. It is used as a simple check on the test caseselection strategy, not as a goal in itself.



10.5. TEST DRIVER GENERATION 195test case selection strategyspecial valuesmodule stateinterval rule on size of stack: [0::PS MAXSIZ]access routine parametersnonetest casesFor each of the special module state values,call ps s push, ps s pop, ps g top, ps g depthcheck exception behaviorafter set calls, check get call valuesFigure 10.4 stack test plan|test case selection strategyTo illustrate our approach to test case selection, consider the test case se-lection strategy for the stack module, shown in Figure 10.4. Recall the stackMIS semantics from Figure 7.1. The contents of the stack are maintained asa sequence of integers. Since there is no reason to believe any value will betreated di�erently from any other value, there are no special values for the stackelements. We do apply the interval rule to the size of the stack; we test themodule for an empty, a partially full, and a full stack. The only access routineparameter is to s push, which is an integer. Again, it is reasonable to believethat all values will be treated the same, so there are no special values for thisparameter. For each special module state, we check both the exception behaviorand, using get calls, the normal-case behavior.10.5 Test Driver GenerationAlthough implementing test drivers manually is straightforward, it is also time-consuming, repetitive, and error-prone, and it produces code that is costly tomaintain. As a result, test driver generation is a good candidate for automatedsupport. For most modules with a call-based interface, we use the testing toolPGMGEN to generate batch test drivers from test scripts.10.5.1 Test script languageA test case is described by providing a trace on a module and associating it withsome aspect of the required behavior of the module in response to that trace.We represent a test case as a �ve-tuplehtrace; expexc; actval ; expval ; typeiwith the following interpretation.



196 Chapter 10 TESTINGmoduleps_accprogs<s_init,s_push,s_pop,g_top,g_depth>exceptions<empty,full>globcod{%#include "system.h"#include "stack.h"%}cases<s_init().g_top(), empty, dc, dc, dc><s_init().s_push(10), noexc, g_top(), 10, int>Figure 10.5 stack|small test scripttrace: a trace used to exercise the module.expexc: the name of the exception that trace is expected to generate (or noexcif no exception is expected).actval : an expression (typically a get call) to be evaluated after trace and whosevalue is taken to be the \actual value" of the trace.expval : the value that actval is expected to have.type: the data type of actval and expval .Below are two test cases for the stack module.<s_init().g_top(), empty, dc, dc, dc><s_init().s_push(10), noexc, g_top(), 10, int>In test cases developed solely to do exception checking, the actval , expval , andtype �elds contain dc, for \don't care." The �rst trace initializes the module andcalls g top, which should signal the exception empty. The second trace pushes10 onto the stack, and checks that g top returns the correct value.A complete test script for stack containing the above two test cases is shownin Figure 10.5. The module section de�nes the module pre�x, which PGMGENplaces in front of every access routine and exception name. The accprogs andexceptions sections de�ne the list of access routines and the exceptions of the



10.5. TEST DRIVER GENERATION 197�� ��test script
PGMGEN�� ��test.c

C compiler/linkertest program
�� ��Implementation

Figure 10.6 PGMGEN system owchartmodule. The globcod section contains global C code, delimited by the symbolsf% and %g. PGMGEN places this global code at the top of the generated testdriver. The test programmer can use the global code to de�ne include �les,stubs, and other functions that are called from the test cases. Finally, the casessection contains the test cases.A test script may be viewed as a partial speci�cation for a module, expressingits required behavior under speci�c circumstances. The purpose of PGMGEN isto generate a driver that will automatically determine whether an MI satis�esthis partial speci�cation.10.5.2 Test program generationThe system ow for PGMGEN is shown in Figure 10.6|ovals indicate human-readable �les and boxes indicate executable programs. The test programmerprepares the script using a text editor. PGMGEN reads that script and generatesthe C driver test.c, which is compiled and linked with the MI. For example, for



198 Chapter 10 TESTINGinvoke c1; � � � ; cn, monitoring exception occurrencescompare the actual occurrences to expexcif there are any di�erencesprint a messageelse if actval 6= expvalprint a messageif any exceptions have occurred since cn was invokedprint a messageupdate summary statisticsFigure 10.7 Steps performed for a PGMGEN test casestack, the test script is stored in the �le stack.script, the MI in stack.c, andthe executable test program that is generated is called stack b. When stack bis executed, it runs the test cases from stack.script and reports any errors.To generate the test driver, PGMGEN �rst generates code to record exceptionoccurrences. Then, for each test case of the formhc1: � � � :cn; expexc; actval ; expval ; typeiPGMGEN generates code that performs the steps outlined in Figure 10.7.Following the last case, code is generated to print summary statistics.10.5.3 The stack TP and TIThe production TP for the stack module is shown in Figure 10.8. The testenvironment section describes the test sca�olding used for testing stack. Thetest case selection strategy is explained in Section 10.4. The test implementationstrategy section de�nes the key aspects of the TI: the C function load(n) isused to load the stack with the values 10; 20; : : : ; 10� n, and tcov (discussed inSection 10.10) is used to measure statement coverage. Note that for the functionload the values themselves are not important, but they should be unique andeasy to generate.The globcod and cases sections of the test script are shown in Figure 10.9;the module, accprogs, and exceptions sections are the same as in Figure 10.5.The globcod section de�nes the function load. Note that the globcod sectionis copied unchanged to the test driver by PGMGEN. This means that explicitmodule pre�xes are required for the access routine calls in this section, such ass init and s push in Figure 10.9. In the cases section, we separate the casesfor the three special module states. For each special module state, we checkthe return values of g top and g depth in that state, and after calls to s pushand s pop. However, s pop signals an exception for the empty stack, and s pushsignals an exception for the full stack, and thus we do not check the return values



10.5. TEST DRIVER GENERATION 199assumptionsPS MAXSIZ > 2test environmentPGMGEN driverno stubstest case selection strategyspecial valuesmodule stateinterval rule on size of stack: [0; PS MAXSIZ]access routine parametersnonetest casesfor each of the special module state values,call ps s push, ps s pop, ps g top, ps g depthcheck exception behaviorafter set calls, check get call valuestest implementation strategyload(n)loads stack with 10; 20; : : : ; 10� nstatement coverage measured using the UNIX utility tcovFigure 10.8 stack test planof the get calls for these cases. For the partially full stack, there are test caseswith a stack size of 3, and the expected behavior for these cases indicates thatno exception should be signaled. This happens only if PS MAXSIZ > 2, and hencethe assumption in the TP.The entire script for stack is 48 lines long and contains 16 test cases. Thetest driver generated by PGMGEN from this script is 453 lines: almost 10 timesthe size of the script. When the driver is compiled and linked with a correct MI,it produces the output shown in Figure 10.10.10.5.4 Embedded C codeIn developing PGMGEN, our goal was to provide a test language powerfulenough to describe the test cases we encountered in practice, but which was ascost-e�ective as possible. In particular, we wanted to minimize the training timefor the test programmer, the cost of implementing and maintaining PGMGEN,and the cost of changing its target language and operating system. Therefore,we have allowed code written in C to be embedded freely in test scripts. As aresult, there is no need in the script language for functions, macros, or iteration
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globcod{%#include "system.h"#include "stack.h"static void load(n)int n;{ int i;ps_s_init();for (i = 0; i < n; i++)ps_s_push((i+1)*10);}%}cases/*empty stack*/<load(0).s_push(10), noexc, g_top(), 10, int><load(0).s_push(10), noexc, g_depth(), 1, int><load(0).s_pop(), empty, dc, dc, dc><load(0).g_top(), empty, dc, dc, dc><load(0), noexc, g_depth(), 0, int>/*partially full stack*/<load(2).s_push(30), noexc, g_top(), 30, int><load(2).s_push(30), noexc, g_depth(), 3, int><load(2).s_pop(), noexc, g_top(), 10, int><load(2).s_pop(), noexc, g_depth(), 1, int><load(2), noexc, g_top(), 20, int><load(2), noexc, g_depth(), 2, int>/*full stack*/<load(PS_MAXSIZ).s_push(0), full, dc, dc, dc><load(PS_MAXSIZ).s_pop(), noexc, g_top(), (PS_MAXSIZ-1)*10, int><load(PS_MAXSIZ).s_pop(), noexc, g_depth(), PS_MAXSIZ-1, int><load(PS_MAXSIZ), noexc, g_top(), PS_MAXSIZ*10, int><load(PS_MAXSIZ), noexc, g_depth(), PS_MAXSIZ, int>Figure 10.9 stack test implementation



10.5. TEST DRIVER GENERATION 201Statistics:Number of test cases: 16Number correct: 16Percentage correct: 100.00Number of exception errors: 0Number of value errors: 0Figure 10.10 stack|output produced by test scriptconstructs|these are available in C and are presumably understood by the testprogrammer.Besides the global C code in the globcod section, C code delimited by f% and%g may also be inserted in the following places in the cases section: betweentest cases, as a call in the trace of a test case, as the actval or expval �eld of atest case, and as a parameter of any call. As for the global C code, this code iscopied unchanged to the test driver by PGMGEN.Consider the stack test case<s_init().s_push(10), noexc, g_top(), 10, int>Suppose we want to test s push and g top not only for 10, but for all values inf10; 20; : : : ; 100g. We can write 10 test cases, but we can also embed the testcase inside a for-loop, as in{% for (i = 1; i <= 10; i++) %}<s_init().s_push(10*i), noexc, g_top(), 10*i, int>The variable i is used both in the parameter to s push and in the expval �eld ofthe test case. For this, i needs to be declared somewhere in the test script, forexample, in the globcod section. The code generated by a test case is a single Cstatement. Thus, to include two test cases inside a for-loop, we need to enclosethem by f and g, as in{% for (i = 1; i <= 10; i++) { %}<s_init().s_push(10*i), noexc, g_top(), 10*i, int><s_init().s_push(10*i), noexc, g_depth(), 1, int>{% } %}10.5.5 The symtbl TP and TITo illustrate the use of embedded code, we consider the testing for symtbl. Partof the symtbl TP is shown in Figure 10.11. The MIS semantics for symtbl areshown in Figure 7.3. The abstract state is a set of symbol/location pairs. Thereare two characteristics of this state for which we choose special values: the size of



202 Chapter 10 TESTINGassumptionsST MAXSYMLEN � length of ST MAXSYMS � 1 in string formST MAXSYMS > 0: : :test case selection strategyspecial valuesmodule statenumber of symbols in table: f0; 1; ST MAXSYMS=2; ST MAXSYMSgsymbol length: short, ST MAXSYMLENaccess routine parametersst s add: strings of length f0; ST MAXSYMLEN + 1; 2 � ST MAXSYMLENgst s add; st s loc; st g loc; st g exsym: empty stringtest casesexceptions: : :normalcheck st g exsym for empty string in empty tableadd the empty string, check and change its locationfor each special module statecheck table lengthcheck that a very long symbol is not in tablefor each i in [0::ST MAXSYMS� 1]if i in [0::t siz� 1]check t sym(i) in table with correct locationcheck st s loc resets locationelse check t sym(i) not in tabletest implementation strategyC functions to support iterating over the special module states,viewed as a sequence:void t init: initialize to the �rst statevoid t next: load next stateint t end: return true if no states remainC functions to generate and check symbols in current state:int t siz: number of symbols in current statechar *t sym(i): i-th symbol in current stateint t loc(i): location of i-th symbol in current statechar *t mksym(i; l): string consisting of i converted to ASCII,padded right with *'s to length lstatement coverage measured using the UNIX utility tcovFigure 10.11 symtbl test plan|normal case test cases



10.5. TEST DRIVER GENERATION 203the table, and the length of the symbols in the table. For the table size, we applythe interval rule to [0::ST MAXSYMS]. In this case, we select two interior points,1 and ST MAXSYMS=2, because we feel that a table size of 1 is di�erent enoughfrom the other table sizes to include it as a special case. Note that this does notviolate the interval rule, which states that at least one point from the interiorof an interval should be selected. For the length of the symbols in the table, weapply the interval rule to [0::ST MAXSYMLEN]. Since there is only one symbol oflength 0, we test it separately; for the special module states we choose tableswith short symbols and symbols of length ST MAXSYMLEN. The special valuesfor access routine parameters are overlength symbols for s add, and the emptystring for the access routines that take a symbol as parameter. The test casesthat are executed for each module state have been divided into those test casesthat should signal an exception and the normal-case test cases. For simplicity,we have shown only the normal-case test cases in Figure 10.11.To loop over the special module states, we de�ne C functions that iterate overthe sequence of special module states using one of the sequence idioms discussedin Section 7.3. Although we are not designing a module interface, the idioms arestill helpful. In this case, the function t init initializes the sequence, t nextadvances to the next special module state, and t end indicates if the end of thesequence has been reached. Each special module state is characterized by n, thetable size, and l, the length of the symbols in the table. There are also severalfunctions that return information about the current state in the sequence: t sizreturns n, t sym(i) the i-th symbol in the table, and t loc(i) the location valueof the i-th symbol.Symbol values and their locations are unimportant, as long as they areunique and easy to generate. To de�ne the symbol values, we use the functiont mksym(i; l), whose value is i in string form padded right with '*' characters tolength l (or zero '*' characters if i has l or more digits). For a given n and l, thespecial module state is a table with the symbols t mksym(i; l), for i 2 [0::n� 1].For the location in position i, we use the value 10� i.We can now explain the assumption:ST MAXSYMLEN� length of ST MAXSYMS� 1 in string formThe maximum number of elements stored in the table is ST MAXSYMS, and there-fore the longest string stored in the table will be ST MAXSYMS� 1 in string form,possibly padded with '*' characters. Thus, if the assumption was violated, oneof the special module states would contain a string with more than ST MAXSYMLENcharacters. However, this string could not be added to the module state, becauses add would signal the exception maxlen for it.The normal-case test cases from the symtbl test script are shown in Fig-ure 10.12. We have used indenting and comments taken from the TP to makethe test script more readable. The embedded code reduces the size of the testscript considerably: although the entire test script contains only 18 test cases,it produces a driver that executes 868 test cases.
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/*check g_exsym for empty string in empty table*/<s_init(), noexc, g_exsym(""), 0, bool>/*add the empty string, check and change its location*/<s_init().s_add("",10), noexc, g_exsym(""), 1, bool>< , noexc, g_loc(""), 10, int><s_loc("",20), noexc, g_loc(""), 20, int>{%t_init();t_next();while (!t_end()) {%} /*check table length*/< , noexc, g_siz(), t_siz(), int>/*check that a very long symbol is not in table*/< , noexc, g_exsym(t_mksym(0,2*ST_MAXSYMLEN)), 0, bool>{% for (i = 0; i < ST_MAXSYMS; i++) {if (i < t_siz()) {%} /*check t_sym(i) in table with correct location*/< , noexc, g_exsym(t_sym(i)), 1, bool>< , noexc, g_loc(t_sym(i)), t_loc(i), int>/*check s_loc resets location*/<s_loc(t_sym(i),t_loc(-i)), noexc,g_loc(t_sym(i)), t_loc(-i), int>{% } else {%} /*check t_sym(i) not in table*/< , noexc, g_exsym(t_sym(i)), 0, bool>{% }}t_next();}%} Figure 10.12 symtbl test implementation|normal case test cases



10.5. TEST DRIVER GENERATION 205int cmp_bool(aval,eval)int aval,eval;{ if ((eval == 0) && (aval == 0)) return(1);else if ((eval != 0) && (aval != 0)) return(1);else return(0);}int prt_bool(aval,eval)int aval,eval;{ printf("\tExpected value:%d. Actual value:%d\n",eval,aval);} Figure 10.13 cmp bool and prt bool10.5.6 Comparing actual and expected valueConsider the test case htrace; expexc; actval ; expval ; typei.As Figure 10.7 shows, after the calls in trace are executed, actval and expvalare compared. To compare them, PGMGEN generates a call to the boolean Cfunction whose name is cmp followed by type . The arguments to this functionare actval and expval . For example, for the stack test case<s_init().s_push(10), noexc, g_top(), 10, int>PGMGEN generates the call cmp int(ps g top(); 10) (note that PGMGENplaces the pre�x ps in front of the call to g top). This C function shouldreturn true when actval = expval , and false otherwise.When the above function returns false, PGMGEN generates a call to the Cfunction whose name is prt followed by type, again with actval and expval asits arguments. The purpose of this function is to print a message indicating thatactval 6= expval and displaying both values.PGMGEN provides the cmp and prt functions for the data types bool(boolean), char, float, int, and string. For example, the implementation ofcmp bool and prt bool are shown in Figure 10.13.For other data types, the tester must de�ne these functions, typically in theglobcod section of the test script. These functions can also be used to de�necustomized comparison and printing functions for standard data types. For ex-ample, the function cmp float provided by PGMGEN uses an exact comparisonto compare two oating-point numbers. For certain applications, it is impos-sible to de�ne the actual value of a oating-point number with such accuracy.



206 Chapter 10 TESTINGfloat epsilon = 0.00001;int cmp_fuzz(aval,eval)float aval,eval;{ float diff;diff = eval-aval;if (diff > epsilon || diff < -epsilon) return(0);else return(1);}int prt_fuzz(aval,eval)float aval,eval;{ printf("\texpval:%f. actval:%f. epsilon:%f\n",eval,aval,epsilon);} Figure 10.14 cmp fuzz and prt fuzzFor these cases the tester could de�ne the functions cmp fuzz and prt fuzz asshown in Figure 10.14. cmp fuzz considers two oating-point numbers equal ifthey are within epsilon of each other. Note that prt fuzz also prints out thevalue of epsilon. To use these functions in a test case, the type �eld of the testcase should be de�ned as fuzz.10.6 Design for TestabilityBoth the module decomposition and the module interface design inuence thetestability of a module. To make testing a�ordable and e�ective, we need to con-sider testability of a module at design time, before the implementation is started.In this section, we review the key principles in design for testability: controlla-bility and observability . While controllability and observability are known tobe important in hardware testing, they are often ignored in software testing.Controllability and observability are critical when software interacts with theenvironment, however, as is the case with most software systems. Poor control-lability and observability also make it di�cult to automate the testing, which isnecessary to make testing a�ordable.A common example of poor controllability in software is the lack of explicitinitialization. Consider the three test cases<s_init().s_push(10).s_push(20), noexc, g_top(), 20, int><s_init().s_push(10).s_push(20), noexc, g_depth(), 2, int><s_init().s_push(10).s_pop, noexc, g_depth(), 0, int>



10.7. BSHAM TEST PLANS AND IMPLEMENTATIONS 207for the stack module. Without the access routine s init, these would have tobe changed to<s_push(10).s_push(20), noexc, g_top(), 20, int>< , noexc, g_depth(), 2, int><s_pop.s_pop, noexc, g_depth(), 0, int>where we rely on the fact that the stack is empty when the �rst test case isreached. Without s init, a large number of changes would have to be made tothe stack test script shown in Figure 10.9. The need for explicit initializationis recognized in hardware testing, where integrated circuits frequently containreset circuitry.A common example of poor observability in software is the undisciplined useof print statements. Exceptions are often signaled by printing a message, whichmakes it hard to automate the testing of exceptions. For example, it is not clearhow we could use PGMGEN to test the stack module if exceptions were signaledby a call to printf rather than a call to an exception handler.Another cause for poor controllability or observability is external interac-tion. While the lack of explicit initialization and the uncontrolled use of printstatements can be avoided, external interaction cannot be completely eliminated.Every system will have modules that interact with other modules. To improvethe testability of such a module, we isolate it where possible and a�ordable, andwe limit the amount of interaction by careful interface design. Most systems alsointeract with the environment, for example, by reading input from the keyboardor by printing output to the screen. To improve the testability of SHAM mod-ules, we have isolated the interaction with the environment in a small numberof modules, so that the other modules can be tested without controllability andobservability problems. Examples are discussed in the next two sections.10.7 BSHAM Test Plans and Implementations10.7.1 The token TP and TISince token does not have any controllability and observability problems we testit with PGMGEN. Recall that the abstract state for token (Figure 7.4) is asequence of tokens. In this case, the special module state values we select aredetermined by the number of tokens in the sequence and their types. Thereis a minimum but no maximum number of tokens de�ned, and we apply theinterval rule to [0::1): we test for states with 0, 1, and 3 tokens. Since there areonly three token types, we include test cases for all of these. Every token type,except for TK BADTOK, has a maximum length associated with it, and we applythe interval rule to the length of the tokens. For TK BADTOK, we include test casesfor tokens that are \almost" of some other type. For example, we include a tokenconsisting of TK MAXINTLEN+ 1 digits, which would be an integer, except thatit is too long. The only access routine for which we include special parameter



208 Chapter 10 TESTINGint cmp_valtyp(actvtp,expvtp)tk_valtyp *actvtp,*expvtp;{ if (!strcmp(actvtp->val,expvtp->val))return(actvtp->typ == expvtp->typ);else return(0);}void prt_valtyp(actvtp,expvtp)tk_valtyp *actvtp,*expvtp;{ printf("Expected value:<%s,%d>. Actual value:<%s,%d>\n",expvtp->val,expvtp->typ,actvtp->val,actvtp->typ);} Figure 10.15 token test implementation|cmp valtyp and prt valtypvalues is s str; we apply the interval rule to the length of the string and varythe number of blanks before and after tokens in the string.The access routine sg next returns a value of type tk valtyp, a structurecontaining the value of the token and its type. To compare expected and actualvalues of this type, we must de�ne cmp and prt functions as discussed in Sec-tion 10.5.6. We de�ne the functions cmp valtyp and prt valtyp shown in Fig-ure 10.15 in the globcod section of the test script. Both functions take two point-ers to tk valtyp as their arguments. To compare the two values, cmp valtypcompares both the value of the token and its type. Similarly, prt valtyp printsout the values and types of both its parameters.10.7.2 The absmach TP and TIabsmach is also tested using PGMGEN. The abstract state for absmach (Fig-ure 7.5) consists of the accumulator, the program counter, and the memory. Thespecial module state values that we select are determined by the e�ect of thesethree on the behavior of sg exec. In particular, we include state values so thatevery SHAM run-time exception occurs at least once and every SHAM instruc-tion is executed at least once. For each instruction, we check the e�ect it hason the accumulator and the program counter. For instructions that also altermemory contents, we check that the change is made correctly. For the accessroutine parameters, we apply the interval rule to the parameters of s acc, s pc,s mem, and g mem.



10.7. BSHAM TEST PLANS AND IMPLEMENTATIONS 209test environmentsham Coordinator used as driverstubs for absmach and exec, production code for sham and tokeninput stored in �lesoutput saved in �les, checked with delta testingdirectory structure:load/input/ - test cases stored one per �leexp/ - expected results of test case (same �le name)act/ - actual results of test case (same �le name)Figure 10.16 load test plan|test environment10.7.3 The load TP and TIThe load MIS semantics are shown in Figure 7.6. load interacts with both theenvironment and other modules. It reads input, produces output, and callsaccess routines from token and absmach. Before we select test cases, we mustdecide on the test environment we are going to use: how to provide input, howto check the output, and whether to use stubs or production code for token andabsmach.The test environment section of the load TP is shown in Figure 10.16. Sinceload reads input from a �le, it is hard to test it with PGMGEN, which has nofacility to deal with access routines that read input. Therefore we must eitherbuild a customized driver to test load, or use the sham Coordinator. We usethe sham Coordinator, because it is simple, it provides good controllability, andit saves us implementing a customized driver. Note that although we use thesham Coordinator, we are not interested in testing it at this point.load uses token to retrieve the tokens from the input. To test load thoroughlywith stubs for token would require stubs almost as complicated as the productioncode for token. In such a case, the production code is the clear choice, since itavoids the need to maintain the complicated stubs. On the other hand, loaduses absmach to load the memory only, and the production code for absmachis non-trivial. We therefore use stubs for absmach. Finally, because we use theproduction sham Coordinator, we must decide whether or not to use stubs forexec. In this case the choice is easy: simple stubs su�ce and the production codeis complicated. In summary, we use stubs for absmach and exec, and productioncode for sham and token.Since we use the sham Coordinator as a test driver, we can store the testinputs in several �les. For each input �le, we maintain a �le that contains theexpected output for that input. To organize the �les, we use three directories:� input contains the input �les.



210 Chapter 10 TESTINGtest case selection strategyspecial valuesmodule statenoneaccess routine parametersinput �le for ld sg load:every load-time exception for every instructionevery SHAM instruction at least onceinterval rule for instructions with an operandcompletely �ll up memorytest casesload-time exceptionsldexc1: all load-time exceptions except NOMEMEXCldexc2: NOMEMEXCnormal caseinstr: every SHAM instructionfill: completely �ll up memoryFigure 10.17 load test plan|test case selection strategy� exp contains the expected output �les, one for each input �le.� act is used to store the actual output �les for a test run, again one foreach input �le.The output produced by load is non-trivial to check. We automate the check-ing using delta testing, where the expected output for a test run is the outputfrom an earlier test run. If there are any di�erences between the actual and theexpected output, the tester must verify which of the two is the correct output,and modify either the expected output or the program. A critical part of deltatesting is the creation of the initial expected output. This can be done manuallyor using the initial version of the production code. In the latter case, the outputshould be checked carefully, because if it contains erroneous data, this may maskprogram errors in future test runs.The test case selection strategy of the TP for load is shown in Figure 10.17.Note that load has no internal state, and the only access routine parameter isthe �le pointer passed to sg load. The special values for this parameter aredetermined by the contents of the �le. We include test cases so that each load-time exception is exercised at least once, and so that every instruction is loadedat least once. For instructions that take an operand, we apply the interval ruleto the operand (either an address or a SHAM integer). Finally, we include a testcase that completely �lls up the available memory.Test cases are stored in several �les, with names chosen to distinguish �lesthat should generate load-time exceptions and those that should not. For exam-



10.7. BSHAM TEST PLANS AND IMPLEMENTATIONS 211load 0load 50load 99 Figure 10.18 load test implementation|part of test casevoid am_s_mem(a,i)int a,i;{ mem[a] = i;}int am_g_mem(a)int a;{ return(mem[a]);} Figure 10.19 load test implementation|stubs for am s mem and am g memple, Figure 10.18 contains the �rst three lines of the �le instr, which should notgenerate a load-time exception.Part of the TI consists of the implementation of the stubs for absmach andexec. We use simple stubs that store the values loaded into memory in an arrayand that print out the contents of this array after the load phase is completedsuccessfully. These stubs (1) provide adequate observability, and (2) can com-bine easily the output checking for the stubs with the output checking for load.To implement this scheme, the stubs for absmach maintain an array mem ofAM MEMSIZ characters. The stub for am s mem stores values in mem, and the stubfor am g mem retrieves values from mem. Both stubs are shown in Figure 10.19.Note that the stubs are much simpler than the production implementations be-cause there is no need to perform exception checking. Figure 10.20 shows thestub for ex s exec, which makes calls to the stub for am g mem to print out thememory contents as a ten-by-ten array. For example, Figure 10.21 shows theoutput that is produced for the test �le instr. Note that the �rst six memorylocations correspond to the object code for the �rst three lines of instr shownin Figure 10.18.The UNIX commands shown in Figure 10.22 are used to perform a test run.For each �le f in the directory input, BSHAM is run on f , output is redirectedto act/f , and act/f is compared to exp/f with the UNIX utility di�.



212 Chapter 10 TESTINGvoid ex_s_exec(){ int i;for (i = 0; i < AM_MEMSIZ; i++) {printf("%4d",am_g_mem(i));if (i % 10 == 9)printf("\n");}} Figure 10.20 load test implementation|stub for ex s exec
0 0 0 50 0 99 1 0 1 501 99 2 0 2 50 2 99 3 03 50 3 99 4 0 4 50 4 995 0 5 50 5 99 6 0 6 506 99 7 0 7 500 7 999 8 90 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0Figure 10.21 load test implementation|expected output

foreach f (input/*)echo input file: $fbsham $f >act/$fdiff act/$f exp/$fend Figure 10.22 load test implementation|shell commands



10.8. ISHAM TEST PLANS AND IMPLEMENTATIONS 21310.7.4 The exec TP and TIFigure 7.7 shows the MIS semantics for exec. The BSHAM version of exec callsaccess routines from absmach. The ISHAM version produces output and callsaccess routines from absmach, scndr, and keybdin. For both versions, since itis hard to write a stub for am s exec that provides good controllability, we usethe production code of absmach. Similarly, for the ISHAM version, stubs forkeybdin would provide poor controllability, and stubs for scndr would providepoor observability. We therefore use the production code for both these modules.To generate manually the sequence of calls that loads the memory in absmachwould be quite tedious, so we use the production code for load and token toload the memory from a �le. Finally, since we use the production code forload and token, it becomes hard to use PGMGEN, and hence we use the shamCoordinator as a test driver.In summary, to test exec we prefer to use the production code for all ofSHAM. We therefore incorporate the testing of exec with the system testing; seeSection 10.9. Note that this is not the only possibility, and that this decisioninuences not only the testing of exec, but also the system testing. Duringsystem testing, we now need to thoroughly exercise exec. For example, weshould achieve 100 percent statement coverage for exec. As an alternative, wecould provide separate testing for exec, in which case the system testing wouldbe simpler.10.7.5 The sham TP and TIAlthough we can test sham, the SHAM Coordinator module, as a separatemodule, sham is so simple that testing it separately is not worthwhile. Therefore,just as for exec, we incorporate the testing of sham with the system testing.10.8 ISHAM Test Plans and Implementations10.8.1 The keybdin TP and TIFigure 7.8 shows the MIS semantics for keybdin. Since keybdin reads inputfrom the keyboard, it has controllability problems and cannot be tested withPGMGEN. To automate the testing requires a means for storing and replayingkeystroke sequences. Although tools exist that provide these services, we canadequately test keybdin with a simple interactive driver. The interactive driverwe use repeatedly waits for input. It displays the characters that are entered onthe screen, and terminates when the character 'q' is entered.Since there is no reason to believe keybdin treats any character di�erentlyfrom any other character, there are no special values to test for. We thereforetest keybdin for just a few characters. Since we have to select a few charac-ters, we use the fact that, in our case, the intended use for keybdin is to read



214 Chapter 10 TESTINGthe ISHAM commands from the keyboard. Therefore we include at least bothISHAM commands and one character that is not an ISHAM command in thetest cases. Since we use an interactive driver to test keybdin, it is the tester'sresponsibility to run the test cases that are described in the TP. Similarly, it isthe tester's responsibility to check that the behavior of the implementation iscorrect for those inputs.10.8.2 The scngeom TP and TIscngeom provides run-time access to the layout of the screen, and it has noabstract state (Figure 7.9). The service provided by scngeom is straightforward.If there were any faults in the MI, these most likely would either cause obviouserrors, such as a missing or truncated screen �eld, or cause errors with minorimpact, such as a �eld that is not displayed in its correct position on the screen.Moreover, the normal-case behavior of g row, g col, g len, and g val is easilyand thoroughly tested in the testing of the scndr module; see Section 10.8.4.The testing of scngeom therefore contains only test cases for the exceptionsof g row, g col, g len, and g val, and normal-case test cases for g legfld,which cannot be tested from the scndr module. Since the exception checkingfor g row, g col, g len, and g val is the same, we further simplify the testingby testing the exceptions for only g row thoroughly. To test g row, we chooseexceptional parameter values for all �eld names and for illegal row and columnvalues determined by the interval rule. For g col, g len, and g val, we includeone test case to ensure that the MI does at least some exception checking. Totest the normal-case behavior of g legfld, we choose special parameter valuesfor all �eld names and for both legal and illegal row and column values.10.8.3 The scnstr TP and TIThe scnstr MIS semantics are shown in Figures 7.10 and 7.11. scnstr providesaccess routines that write a string to any screen position. Since the exceptiontesting for scnstr does not pose any observability problems, we perform the ex-ception tests with a PGMGEN script. The normal-case testing, on the otherhand, poses observability problems because scnstr updates the terminal screen.Automating the testing of scnstr requires access to the screen contents. To pro-vide such access with software is a complex task, and instead we test scnstr witha customized driver and check the output manually. To simplify the checking ofthe output, the customized driver displays patterns on the screen that are chosento exercise special values and to be quickly recognizable as correct or not.To select special values, note that only the position where strings are dis-played is important, not the actual content of the string. We apply the intervalrule to the row and column number for both the exception and normal-case test-ing. For the normal-case testing, we use a unique string for each special positionon the screen.



10.9. SYSTEM TESTING 215The implementation for the exception testing is straightforward. The driverfor the normal-case testing displays the unique strings in the special positionson the screen. To allow the tester time to verify the screen contents, the driverthen waits for the tester to press a key. Once the tester has veri�ed the screencontents, he or she can press any key, and the test driver terminates.10.8.4 The scndr TP and TIThe scndr MIS semantics are shown in Figure 7.12. The purpose of scndr isto update the screen contents according to the information stored in absmach.Since it updates the screen contents, it has observability problems, and we testit with a customized driver.scndr calls three other modules: scngeom, scnstr, and absmach. Sincewe test the normal-case behavior of scngeom while testing scndr (see Sec-tion 10.8.2), we must use the production code for scngeom. Thus, the testermust check the position of each screen �eld as well as its value. We could verifythis by checking that the access routine ss s str of scnstr is called by scndrwith the correct parameters. However, in this case, verifying this visually is easyenough, and hence we use the production code for scnstr.To verify that scndr correctly displays the information in absmach, we pro-vide stubs for am g mem, am g pc, and am g acc, that return a unique value foreach memory cell, the program counter, and the accumulator. For example, thestub for am g mem returns 10� a as the content of memory address a.After initializing various modules, the test driver calls sd s mem to updatethe screen contents according to the values returned by the stubs for absmach.The driver then waits for the tester to press a key, so that he or she can verifythe screen contents.10.9 System TestingDuring system testing, we use production code for the entire system and, ifpossible, we test the system in its production environment. The most importantgoal in system testing is to test whether or not a system satis�es its RS. Thisincludes testing performance and storage requirements, if these are part of theRS. Depending upon the size and complexity of the system, system testing mayalso include some or all of the following testing techniques.Volume and stress testing: to test whether the system can handle large volumesof data and heavy loads.Reliability testing: to test how reliable a system is. For example, to test whethera system meets a certain mean-time-to-failure requirement.Recovery testing: to test how well the system can recover from errors such ashardware failures or data errors.



216 Chapter 10 TESTINGAcceptance testing: to test whether the system meets the needs of the end user.It is typically performed by the end user.In the following, we will only test whether BSHAM and ISHAM meet theirrespective RSs.10.9.1 BSHAMIn system testing, it is important to focus the testing on the parts of the systemthat were not tested during module testing. We have tested every SHAM moduleseparately, except for exec and the sham Coordinator module. Since sham isso simple, the test case selection for system testing is dominated by the need toexercise the exec module thoroughly.The test environment and test case selection strategy sections for thesystem TP of BSHAM are shown in Figure 10.23. In the testing of BSHAM, wedistinguish test cases with command-line errors and test cases that read inputfrom a �le. Since BSHAM produces output for all the test cases, we store thisoutput in a �le so that we can use delta testing to automate the checking ofthe output. The expected output for the test cases with command-line errorsis stored in the �le cmdlin.exp, and the actual output is stored in the �lecmdlin.act. For the other test cases, we use the same directory structure asfor testing load: the directory input contains the input �les, exp the expectedoutput �les, and act stores the actual output �les for a test run.Since the BSHAM system has no module state and no access routines, wecannot use these to select special values for test cases. In BSHAM, the specialvalues that we want to test are determined by the command-line arguments andthe contents of the input �les. We test every command-line error once. Forthe other test cases, we distinguish three types: test cases that produce load-time exceptions, those that produce run-time exceptions, and those that do notproduce any exceptions at all. For load-time exceptions, we note that we havealready tested the load module. However, recall that in testing load, we usestubs for some of the modules in SHAM. We therefore include one test case witha load-time exception, to ensure that the replacement of stubs by productioncode has not introduced any errors.Since we have not tested exec yet, we must test every run-time exception atleast once. However, we have already tested that the access routine am sg execfrom absmach signals the correct run-time exception, and so we only need to testwhether or not exec prints the correct message for each exception. We thereforeinclude no more than one test case for every run-time exception. Note that forrun-time exceptions we can store only one test case per input �le.For the test cases that do not signal an exception, we also bene�t from theprevious testing of am sg exec. We assume that it returns the correct value andcorrectly changes the memory contents and the value of the accumulator andthe program counter. We do need to test whether exec correctly deals with thereturn value of am sg exec. For return values other than AM HALT and AM PRINT,
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test environmententire BSHAM systeminput stored in �lesoutput saved in �les, checked with delta testingdirectory structure:sham/input/ - test cases stored one per �leexp/ - expected results of test case (same �le name)act/ - actual results of test case (same �le name)sham/cmdlin.exp - expected results for command-line test casessham/cmdlin.act - actual results for command-line test casestest case selection strategyspecial valuescommand-line errorseach command-line error oncecontent of input �leone load-time exceptionevery run-time exception onceSHAM instructionshalt with pc = f0; SY MEMSIZ=2; SY MEMSIZ � 1gprint with interval rule on content accumulatortest casescommand-line errorshard-coded in Make�leload-time exceptionsldexc: one load-time exceptionrun-time exceptionsaddrexc: mem[pc] = ADD:object, mem[pc+ 1] = 100arithexc: acc = 500 + 500noopexc: pc = 99, mem[pc] = LOADCON:objectobjectexc: mem[pc] = 10normal-casehalt[1-3]: HALT instruction, check with PRINT instructionprint: print special valuestwo+two,sum: programs from Appendix of RSFigure 10.23 BSHAM test plan|part 1



218 Chapter 10 TESTINGtest implementation strategytarget runtestb in Makefiletest cases for command-line errorsfor each �le f in input/bsham f >act/fdiff act/f exp/fstatement coverage for sham and exec measured using the UNIX utility tcov100% coverage for statements not associated with ISHAMFigure 10.24 BSHAM test plan|part 2this is tested by the test cases for the run-time errors. For AM HALT, we apply theinterval rule to the value of the program counter in which the halt instruction isexecuted, and we include three test cases. For AM PRINT, we apply the intervalrule to the value of the accumulator. Finally, we include some non-trivial normal-case test cases as a \sanity check" of the whole system. For this purpose, we usethe two SHAM programs from the appendix of the RS.The test implementation strategy section for the TP of BSHAM is shownin Figure 10.24. To run the test cases with command-line errors, we invokeBSHAM with the incorrect command-line arguments. To run the other testcases, we use the same UNIX commands as for load (see Section 10.7.3). Afterrunning the test cases, we use the UNIX utility tcov to check the statementcoverage of exec and sham. Since these modules contain #ifdefs, the statementsassociated with ISHAM will not be executed. We do check that all statementsassociated with BSHAM have been executed at least once.10.9.2 ISHAMAlthough BSHAM has some controllability and observability problems, these arefar worse in ISHAM. Besides reading the program from a �le, ISHAM obtainsinput from the keyboard and prints information to the screen. However, intesting ISHAM, we use the fact that the command-line arguments and largeparts of exec and sham are exercised in the BSHAM testing. Similarly, thekeyboard input and screen output modules have also been tested separately.Therefore we only need to test that exec and sham correctly respond to theuser commands entered at the keyboard. This requires only a few simple testcases, making it feasible to test ISHAM interactively: we manually provide thekeyboard commands and manually verify the behavior.The programs we use for testing ISHAM are a subset of the test cases forBSHAM. There are four programs we use to test ISHAM: one with a load-time exception, one with a run-time exception, and the two programs from theappendix of the RS.



10.10. VERIFICATION 219For the program with the load-time exception, ISHAM should terminate afterthe load phase. For the program with the run-time exception, we step throughthe program until the exception occurs. We include only one load-time and onerun-time exception because all we are testing is that ISHAM correctly respondsto these. We have already tested that the exceptions are correctly signaled byam sg exec and that the correct exception message is produced by exec.For each of the two programs from the appendix, we step though the entireprogram, checking that the screen contents are correctly updated. We also needto test the ISHAM command EXIT . For this, we use the simpler of the twoprograms of the appendix. We load the program three times, and execute theEXIT command (1) right after the program is loaded, (2) after several instruc-tions have been executed but before the halt instruction is reached, and (3) whenthe halt instruction is reached.After running the test cases, we use the UNIX utility tcov to check the state-ment coverage of exec and sham. This time, we check that every statementinside the #ifdefs for ISHAM has been executed at least once. All other state-ments in these modules are executed at least once in the testing of BSHAM.10.10 Veri�cationIn this section, we discuss the veri�cation procedures for the TP and the TI.10.10.1 Test planSince a TP is not executable, we can verify it only by inspection. Figure 10.25shows the criteria for a TP. Since the test case selection is primarily based onthe MIS, a thorough understanding of the MIS is required to understand the TP.While it is easy to verify that a TP is well formed, it is a lot harder to verifythe last three \additional criteria" for a TP. Dijkstra's Law of testing tells usthat we can never do enough testing to guarantee that there are no more bugsremaining. We thus have to �nd a balance between the adequacy of the testinputs and the cost of maintaining and running the test cases. This means thatthe TP must be comprehensible enough to be able to estimate both the adequacyand the feasibility of the proposed testing. The adequacy and feasibility criteriaindicate where the balance should lie. On the one hand, test cases should atleast exercise the normal and exceptional behavior of every access routine, andtypically 100 percent statement coverage is expected. On the other hand, itshould be possible to implement the testing a�ordably.10.10.2 Test implementationRecall that the TI includes the test sca�olding, the test data �les, and theprocedures|both manual and automated|required to execute the tests. The



220 Chapter 10 TESTINGFor the module under test, M :� Audience. Those considering running or modifying M 's testing.� Prerequisites. A thorough understanding of M 's MIS and some understandingof M 's MID.� Purpose. Serve as a planning tool for development and evaluation of the testcase selection strategy. Document the TI.� Additional criteria.1. Well formed. The TP follows the format described in Section 10.2.2. Comprehensible. The TP can be read and understood by the intendedaudience. It is su�cient to estimate the adequacy and the feasibility of theTI.3. Adequate. Test cases are planned to exercise the module as thoroughly asis practical. Tests are planned to invoke every access routine in normal andexceptional situations. 100% statement coverage is expected.4. Feasible. The TP can be implemented a�ordably.Figure 10.25 Test plan criteriaveri�cation criteria for a TI are shown in Figure 10.26. Since a TI is executable,we verify it both by inspection and by testing.The only criterion that needs further explanation is the correctness criterion.Since the purpose of the TI is to implement the TP, we verify that it follows theTP as closely as possible. For example, in a PGMGEN test script, the order ofthe test cases should follow the order given in the TP. As shown in the symtbltest script (Figure 10.12), the correspondence between the TP and the TI canbe clari�ed by using comments in the test script.In addition, we verify that the tests run to completion, with correct resultsand 100 percent statement coverage. We measure the statement coverage withthe UNIX utility tcov , which instruments a program with additional statementsto keep track of how often every statement in the original program is executed.To measure statement coverage for an MI, it is compiled with a special option.This creates an instrumented object �le, and a tcov data �le. Each time theprogram is executed, coverage information is accumulated in the data �le. Fi-nally, the program tcov is run on the data �le, which produces a version of theMI in which each statement is pre�xed with the number of times it has beenexecuted. To make them easy to �nd, statements that have never been executedare pre�xed with the string \#####."



10.11. SUMMARY 221For the module under test, M :� Audience. Those considering running or modifying M 's testing.� Prerequisites. A thorough understanding of M 's MIS and some understandingof M 's MID.� Purpose. Implement the TP as simply and inexpensively as possible.� Additional criteria.1. Well formed. The code in test scripts obeys the Code Format Rules shownin Appendix G. For each standalone moduleM , a simple interactive testeris provided, giving keyboard access to all access routines and displayingreturn values on the screen. In M .c, the testing access routine g dump isimplemented to display the module state on the screen.2. Comprehensible. The TI can be read and understood by the intended au-dience.3. Correct. The TI follows the TP. The tests run to completion, with correctresults and 100% statement coverage.Figure 10.26 Test implementation criteria10.11 SummaryControllability and observability dictate that we test many modules individually.We advocate the systematic testing of modules in which the testing is planned,documented, and maintained. Systematic testing is performed by maintainingtwo work products for each module tested: the TP serves as speci�cation, out-lining the test case selection and execution strategies, and the TI implementsthe TP.We emphasize three ways to make the testing of modules a�ordable ande�ective.1. Select test cases most likely to expose errors. Two methods for selectingtest cases are functional testing and structural testing. With functionaltesting, test cases are based primarily on the speci�cation of a module.With structural testing, test cases are based on the internal structure ofthe code. In testing SHAM, we use functional testing for test case selection:we base test cases on special values for access routine parameters, modulestate, and combinations of these. We use structural coverage, in particularstatement coverage, as a check on the adequacy of the test cases.2. Automate repetitive and tedious tasks. Where possible, automate the exe-cution of test cases and the comparison of actual and expected outputs, be-cause these steps are performed every test run. The execution of test casesis automated using the PGMGEN testing tool, customized test drivers, andUNIX scripts. The comparison of outputs is automated using PGMGEN



222 Chapter 10 TESTINGscripts and delta testing. Where automation is not possible, limit testingto a few cases for which the output is easy to check.3. Design for testability. The key considerations in design for testability arecontrollability and observability. Typical problems with controllability andobservability are caused by interaction with other modules and the environ-ment. Although this interaction cannot be eliminated completely, we canlimit the problems by isolating the module under test and by restrictingthe interaction with the environment to a few modules.Although it is important to test each module in isolation, we also need toperform integration and system testing. In a top-down approach to integrationtesting, we start by testing a top-level module using stubs, and gradually replacethe stubs by production code. In a bottom-up approach, we �rst test low-levelmodules using drivers, and gradually replace the drivers by higher-level modules.In testing SHAM, we use a mixture of top-down and bottom-up testing.Dijkstra's Law of testing tells us that testing cannot guarantee the absenceof faults. This means that during testing we have to �nd a balance betweenthe adequacy of the test inputs and the cost of maintaining and running thetest cases. The hardest part of verifying a TP and the corresponding TI is todetermine whether the testing is both adequate and feasible.10.12 Bibliographic NotesTwo general textbooks on software testing that cover most of the topics dis-cussed in this chapter are [42] and [82]. However, most of the testing researchhas focused on test case selection. Functional testing was �rst proposed in [83]and discussed in detail in [43]. Structural testing techniques such as path testingare discussed in [84]. Due to the infeasibility of path testing, other structuraltesting techniques such as dataow testing [85], mutation testing [86], and do-main testing [87] have been proposed. Partition testing [88] mixes functionaland structural testing in that it considers both the speci�cation and the imple-mentation for de�ning test cases. A recent text by Beizer [89] focuses on testcase selection, and discusses many of the above, and other, test case selectiontechniques.For test case execution, several tools similar to PGMGEN have been proposedin the literature. Panzl [90] reports on the regression testing of FORTRAN sub-routines using an automated tool. The DAISTS system [91] performs moduletesting and describes test cases using traces. Given a formal algebraic speci�-cation of the module under test, DAISTS automatically determines the correctbehavior for a given test and measures the coverage of the speci�cation and theimplementation. Frankl [92] has developed a tool for object-oriented testing us-ing algebraic speci�cations. The Protest system [93] is similar to PGMGEN,except that test cases are de�ned by a PROLOG program. Finally, the ACE



10.12. BIBLIOGRAPHIC NOTES 223tool [94] is an enhancement of PGMGEN that supports the testing of Ei�el andC++ classes.Although very little has been published about test documentation, the IEEEStandard for Software Test Documentation is an excellent source of informationon this topic [95]. The standard proposes a set of basic test documents, which issubstantially more elaborate than the TPs we use in SHAM. The standard alsocontains an example of how these documents can be used in practice.
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Chapter 11ConclusionsIn this text we present an approach to software development based on well-de�ned phases and work products. Below we summarize the most importantconcepts and discuss the di�culties commonly encountered when applying thisapproach in practice.11.1 PrinciplesAs we have seen, basic principles play a key role in handling the di�cult problemsthat arise in multi-version/multi-person programming. Perhaps the most impor-tant principle in software engineering is separation of concerns [9]. When facinga problem that is too complex to be solved directly, decompose the problem intosubproblems, recursively. In addition to the general principle of separation ofconcerns, we have emphasized four broad themes.1. The central role of documentation. We present a single set of documentssupporting design, implementation, and maintenance. Precise system andmodule speci�cations play a key role, providing the foundation for theimportant practice of implementation to speci�cation.2. Systematic veri�cation. We use two complementary methods of veri�ca-tion. Inspections are applied to all work products, and testing is appliedto executable work products.3. E�ective use of mathematics. While we make frequent use of mathematicalconcepts and notations, our approach is not highly formal. We use bothformal notations and prose, choosing whichever seems clearer and simpler.Our inspections are proof-based, in the sense that the reader's job is topresent a convincing logical argument.4. Reducing the cost of maintenance. Our design method is based on informa-tion hiding, whereby maintenance costs are reduced by planning for likely227



228 Chapter 11 CONCLUSIONS1. Requirements Speci�cationSpeci�cation of the required system behavior.2. Module GuideDescription of and motivation for the module decomposition.3. Module Interface Speci�cationSpeci�cation of the required behavior of each module.4. Module Internal DesignSpeci�cation of the module internal data structures.5. Module ImplementationProduction source code.6. Test PlanStrategy for selecting and executing tests.7. Test ImplementationSource code, data �les, and manual procedures required for testing.Figure 11.1 Work product summarychanges to the system. Our testing is automated so that the tests can berepeated after every change to the implementation.11.2 Work ProductsWe illustrate the above principles with a software development approach basedon the seven work products shown in Figure 11.1. For each work product, wepresent standard formats, design techniques, and veri�cation procedures. De-tailed examples serve to show how to use the approach in the development ofnon-trivial software systems.We emphasize speci�cation and veri�cation especially. While not highly for-mal, our speci�cations are precise enough to support implementation to speci�-cation. The inspection procedures help �nd many errors long before code exe-cution begins, and the test suites provide highly automated checks on run-timebehavior.11.3 Practical ConsiderationsIn practice, software development rarely follows the step-by-step approach out-lined in Figure 11.1. Numerous practical considerations interfere:� The end user does not know what is needed. It is di�cult for the user toenvision the system before it is developed and to communicate this visionto the software developers. Users frequently overlook aws in a proposed



11.3. PRACTICAL CONSIDERATIONS 229system when it is described solely by a Requirements Speci�cation. Pro-totypes may be developed to give the users a concrete, though incomplete,model of a future system. Even with prototypes, serious aws are oftendiscovered after delivery.� Human errors occur. Typically, the number of details is overwhelming.There are many design alternatives and no sure way of deciding which isbest. Even with systematic veri�cation procedures in place, many errorsare �rst detected in later development phases or after delivery.� Design decisions are invalidated by change. Large software developmentprojects often take one or more years to complete. During that time,changes in user needs and in the underlying platform are inevitable. As aresult, many work products that have been completed and veri�ed mustbe changed and reveri�ed. Extensive changes may be required; some workproducts may have to be discarded.� Design freedom is constrained by existing software. There is a huge amountof software in existence. While it is awed in many ways, it cannot bethrown away; the replacement cost is too high. Thus, most programmersspend their time making changes to existing systems with every changetightly constrained by its e�ects on the rest of the system. Even newsoftware must interact closely with existing software, eliminating manyotherwise desirable design alternatives.� Design methods are constrained by existing development practices. Recentsurveys [96] have con�rmed what many software professionals have longbelieved: most developers use no explicit methodology. Code inspectionand testing are in widespread use. However, speci�cations are rarely pre-cise enough to be inspected e�ectively or to support implementation tospeci�cation. Almost no use is made of mathematics in software develop-ment. Thus, industrial adoption of the methods in this text may requiresubstantial change in the work habits of some developers.In summary, software development rarely follows the process outlined in Fig-ure 11.1. However, documentation that simulates this ideal process can still beproduced, with signi�cant bene�ts. Readers of the documentation will be givena rational explanation of the system. Such a description is usually simpler, morecomprehensible, and more useful than the actual history of the development.Also, having a model of the ideal process helps developers to come closer toit. Finally, in an organization with many projects, a standard process makesmeasurement and review simpler and more e�ective.



230 Chapter 11 CONCLUSIONS11.4 SHAM Development HistoryTo illustrate the di�erences between the actual and ideal software developmentprocesses, we consider the development of the SHAM system. The SHAMwork products are presented in this text as though the development proceededsmoothly through the six phases without backtracking. For three main reasons,this was not the case. First, the software development schedule was driven bythe text writing schedule. Chapters 2, 3, 7, and 10|and the associated SHAMwork products|were written �rst and submitted to various publishers for re-view. Only then were the remaining chapters written and the associated workproducts developed. Second, for most of the SHAM development, the authorswere on di�erent continents: North America and Australia. With modern elec-tronic communication, such distributed development is feasible, but it is stilldi�cult. Finally, before SHAM, �ve di�erent systems were used as teachingexamples. Many SHAM work products were derived from these systems. Forexample, the screen handling decomposition|scnstr , scngeom, and scndr|wasdeveloped earlier. All of the token and scnstr work products were taken fromprevious systems.Due to the above constraints, the SHAM development did not follow the idealchronology. Instead the development order was as follows:1. The SHAM language was designed. The instructions were chosen, thesyntax determined, and the semantics sketched. Several sample SHAMprograms were coded.2. The Module Guide was sketched.3. All Interface Speci�cations, Test Plans, and Test Implementations werecompleted. Note that, with precise speci�cations, it is feasible to developthorough testing before implementation begins.4. The BSHAM and ISHAM Module Internal Designs and Implementationswere completed, requiring many Interface Speci�cation changes.5. The BSHAM and ISHAM Requirements Speci�cations were written, a partat a time throughout development. Many inconsistencies were discoveredbetween these speci�cations and other work products. Numerous changesto all work products were made to achieve consistency. It is now clear thatdeveloping the Requirements Speci�cations �rst would have signi�cantlyreduced the rework. It is not clear whether we could have done this withoutthe understanding gained during design and implementation. As it was,the Requirements Speci�cations were important products of the design andimplementation e�ort.6. The Module Guide was completed.



11.5. OBJECT-ORIENTED PROGRAMMING 231In summary, the SHAM development was far from ideal, due to numerous prac-tical considerations. Still, we present the work products rationally, because achronological presentation would be extremely confusing. We relied heavily onthe work products|especially the Requirements and Interface Speci�cations|tomaintain control while the developers were separated by thousands of kilometersand an 18-hour time di�erence.11.5 Object-Oriented Programming11.5.1 OOP and BCOOPObject-oriented programming (OOP) is based on encapsulation, inheritance, andpolymorphism, as supplied by languages such as SmallTalk and C++. Encapsu-lation insulates parts of the system from changes in other parts. Inheritance isa mechanism by which the services of one object can be extended or changed,without having to reimplement the entire object. Polymorphism allows us toprovide the same service for objects of di�erent types.In this text we take a conservative approach to object-oriented programmingby using base class object-oriented programming (BCOOP). BCOOP uses onlyencapsulation and can be carried out using C, Pascal, and even FORTRAN; theseparate compilation facilities of these languages provide adequate support forencapsulation. While inheritance and polymorphism are important concepts,there are signi�cant advantages to BCOOP. From a teaching perspective, it iscritical to recognize the complexity of full OOP. An entire course can easily bedevoted to teaching just the required language features. Thus, we cannot teachfull OOP without sacri�cing essential Software Engineering material. Of thethree concepts|encapsulation, inheritance, and polymorphism|encapsulationis certainly the most important concept and the one that should be taught �rst.However, before leaving the SHAM system for good, we take a brief look at fullOOP, as supplied by the C++ programming language.11.5.2 Classifying a set moduleWe begin our brief sojourn into C++ by converting a set module into a set class.The sset module is speci�ed in Table H.2 and Figure H.1. Figure 11.2 shows thedeclaration for the sset class. Based on this declaration, any number of ssetobjects can be created. The constructor, sset, is called automatically at objectcreation. The other access routines are as in the C version. The concrete statevariables, s and scnt, appear in the class declaration, as does the local functionfindpos.The bene�ts of C++ are apparent even in this small example.� The hidden and exported identi�ers are speci�ed explicitly. In C, staticdeclarations and �le scope can only approximate this interface information.



232 Chapter 11 CONCLUSIONSconst int N = 10;class sset {public: sset();void s_add(int); // mem, fullvoid s_del(int); // notmemint g_mem(int);protected:int s[N];int scnt;int findpos(int);}; Figure 11.2 sset class declaration� The constructor invocation is generated automatically. In C, we must relyon the module user to invoke this routine.� Objects of type sset can be created at will, at compile time, or run time.Only one instance of the sset module can exist in a C program.Inheritance allows a programmer to provide a new class by building on anexisting class. Figure 11.3 shows how an iterator can be added to the sset class.(See Table H.3 and Figure H.2 for a speci�cation of the iset module.) Objectsof type iset provide the functions shown in Figures 11.2 and 11.3. When s addis called, the code provided by sset is executed; when s mod is called, the newiset code is executed. Programmers are frequently required to provide manyvariations on the same service. Inheritance provides a way to do this whileminimizing the amount of code to be written and maintained.C++ provides another powerful mechanism for avoiding duplicate code. Thesset class stores a set of integers. Suppose that a set of strings was required.The sset code could be copied and quickly modi�ed to produce this new class.The same approach could be used to develop a variety of classes di�ering onlyin the type of the set elements. The same result can be achieved with far lesscode by using C++ templates. Figure 11.4 shows the class declaration for thetset class. The declaration is parameterized by Element, the data type of theset elements. Element can be a built-in or user-de�ned type.While C++ is considerably more complex than C, with practice substantialbene�ts are available from base classes, inheritance, and templates, as well asthe many features not mentioned here.
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typedef enum {SET,SEQ} mod;class iset : public sset {public: iset();void s_mod(int);void sg_next(int); // endint g_end();private:mod m;int iscnt;} Figure 11.3 iset class declaration
const int N = 10;template <class Element>class tset {public: tset();void s_add(Element); // mem, fullvoid s_del(Element); // notmemint g_mem(Element);protected:Element s[N];int scnt;int findpos(Element);}; Figure 11.4 tset class declaration



234 Chapter 11 CONCLUSIONS11.6 Parting WordsWe have described a disciplined approach to multi-person/multi-version pro-gramming. We doubt that any reader will use this approach exactly as pre-sented. Rather we intend our approach as a starting point. We expect thatmany of you are or will soon be working on large software projects and willface di�cult problems. We hope that you will �nd help among the techniquespresented here.
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Appendix ARequirementsSpeci�cationsA.1 BSHAM Requirements Speci�cationA.1.1 OverviewA.1.1.1 System overviewSHAM, the Strooper-Ho�man Abstract Machine, provides an interpreter fora toy assembly language. The underlying machine has only two registers andperforms arithmetic on unsigned decimal integers. Ten instructions are provided.SHAM operates in a load-and-go fashion; in response to a single user command,a �le of assembler instructions is translated to object code, loaded into mainmemory, and executed.There are two versions of the SHAM system. BSHAM, the batch version,is speci�ed in this document. ISHAM, the interactive version, is speci�ed sepa-rately.A.1.1.2 Hardware and software environmentBSHAM runs on Sun/3 and Sun/4 workstations running SunOS. It is imple-mented in the C programming language and requires the UNIX/C standardlibraries [55].A.1.1.3 NotationAll identi�ers are shown in italics. The names of constants and abbreviationsare all uppercase. The others are all lowercase, except for types, whose namesend in `T '. 237



238 Appendix A REQUIREMENTS SPECIFICATIONSA.1.1.4 Document overviewThe details of BSHAM operation are presented in the sections below. Sec-tion A.1.2 declares the environment variables. Section A.1.3 describes how toinvoke BSHAM from the UNIX shell and contains the �nite state machines(FSMs) that specify how BSHAM loads and executes source programs. Sec-tions A.1.4{A.1.6 declare a collection of constants, types, and functions usedthroughout this document. Section A.1.7 lists the changes to BSHAM likelyto be requested in the future. Section A.1.8 contains two sample BSHAM pro-grams; Section A.1.9 contains tables that specify the details of the BSHAMsyntax, semantics, and exceptions.A.1.2 Environment variablesA.1.2.1 Input variablessrcfil : stringThe �le name passed on the command line.A.1.2.2 Output variablesstdout : stringUNIX stdout.A.1.3 State machineBSHAM behavior is speci�ed using two FSMs: one for each of the load andexecution phases. The load-phase FSM reads the source program a line at atime, and loads the object code version into BSHAM's main memory. Exceptionmessages are issued as needed. If the load phase is exception-free, then theexecution-phase FSM begins running. It continues until a HALT instruction isreached, or an exception occurs.A.1.3.1 Command-line invocationBSHAM is invoked by typingbsham srcfilon the command line. Input is read from srcfil and output is written to stdout.If the srcfil argument is not present, excmsg(NOFILEXC; 0; "") is writtento stdout. If srcfil is unreadable (or does not exist)excmsg(FILSYSEXC; 0; srcfil)is written to stdout. If there are any command-line exceptions, BSHAM execu-tion terminates.



A.1. BSHAM REQUIREMENTS SPECIFICATION 239InputsEach input is a line from srcfil, read in the order it appears in srcfil.OutputsNormal-case output and exception messages are written to stdout.Statesmem : sequence [0::MEMSIZ � 1] of shamintegerTInitial stateEvery element of mem is set to 0.Transitions and outputsFor line L, with line number n:if the Load-phase Exc. Table (Table A.3) speci�es an exception thenwrite the speci�ed message to stdoutelse if no previous line had an exception thenif there is room in mem thenload the object code form of L into memelse write excmsg(NOMEMEXC; n; "") to stdoutFigure A.1 Load-phase FSMA.1.3.2 Load phaseThe instructions and their arguments are shown in Table A.1. The �rst columncontains the instruction mnemonic used in this document. Column two containsthe string that must be used in source �les read by BSHAM. Column threecontains the object-code form generated by BSHAM. The last column shows thetype of the instruction operand, if any. For an instruction with mnemonic I ,I:source and I:object refer to I 's source code string and object code integer,respectively.At load time, the contents of srcfil are scanned a line at a time, converted toobject code form, and loaded into main memory. Each line in srcfil must containexactly one BSHAM instruction. Input lines must not exceed MAXLINLENcharacters|BSHAM behavior is unpredictable on longer lines. On each inputline, tokens must be separated by one or more blanks. Object code instructionsare loaded contiguously, beginning at address 0. Instructions without operandsoccupy a single memory location. Instructions with an operand occupy twoconsecutive memory locations; the instruction code is in the �rst location andthe operand in the second. The load actions are described in detail in the FSMin Figure A.1. If there are any load exceptions, BSHAM execution terminatesat the end of the load phase.



240 Appendix A REQUIREMENTS SPECIFICATIONSInputsNone.OutputsNormal-case output and exception messages are written to stdout.Statesmem : sequence [0::MEMSIZ � 1] of shamintegerTacc : shamintegerTpc : shamaddrTInitial statemem;acc; pc := (the �nal value from the load phase FSM); 0; 0Transitions and outputsfor the instruction beginning at mem[pc]:if the Execution-phase Exc. Table (Table A.4) speci�es an exception thenwrite the speci�ed message to stdoutterminate SHAMelse if mem[pc] = HALT:object thenterminate SHAMelse if mem[pc] = PRINT:object thenwrite to stdout : acc jj newlinemodify mem, acc, and pc as shown in the Language Semantics TableFigure A.2 BSHAM execution-phase FSMA.1.3.3 Execution phaseThe execution phase is based on Table A.2, the BSHAM Language Semanticstable. This table speci�es the e�ect of each exception-free BSHAM instructionon the values of mem, acc, and pc. The FSM itself is straightforward (see Fig-ure A.2). The execution phase consumes no input; all the required informationhas already been loaded into mem, pc, and acc. The FSM executes the instruc-tions in mem[pc] until an exception occurs or mem[pc] = HALT:object.A.1.4 ConstantsName ValueMAXLINLEN 100MAXINT 999MEMSIZ 100A.1.5 TypesshamaddrT = [0::MEMSIZ � 1]shamintegerT = [0::MAXINT ]



A.1. BSHAM REQUIREMENTS SPECIFICATION 241sourceT = fLOAD:source; STORE:source; ADD:source; SUBTRACT:source;BRANCH:source;BRANCHZERO:source; BRANCHPOS:source;LOADCON:source; PRINT:source;HALT:sourcegop0sourceT = fHALT:source; PRINT:sourcegop1sourceT = sourceT � op0sourceTobjectT = fLOAD:object; STORE:object; ADD:object; SUBTRACT:object;BRANCH:object;BRANCHZERO:object; BRANCHPOS:object;LOADCON:object; PRINT:object;HALT:objectgop0objectT = fHALT:object; PRINT:objectgop1objectT = objectT � op0objectTexcidT = fFILSYSEXC;NOFILEXC;BLANKLINEXC;MISSINGOPEXC;NOMEMEXC;OPFMTEXC; SOURCEEXC;ADDREXC;ARITHEXC;NOOPEXC;OBJECTEXCgA.1.6 Functionsexcmsg : excidT � integer � string! stringif id is then excmsg(id; loc; tok) isCommand-line messagesFILSYSEXC Command line error. Cannot open file: tokNOFILEXC Command line error. No file name specifiedLoad-phase messagesBLANKLINEXC Load exception at loc. Blank line illegalMISSINGOPEXC Load exception at loc. Operand missingNOMEMEXC Load exception at loc. Program too largeOPFMTEXC Load exception at loc. Illegal operand: tokSOURCEEXC Load exception at loc. Illegal instruction: tokExecution-phase messagesADDREXC Execution exception at loc. Illegal operand: tokARITHEXC Execution exception at loc. Arithmetic overflowNOOPEXC Execution exception at loc. Operand not accessibleOBJECTEXC Execution exception at loc. Illegal instruction: tokA.1.7 Expected changesInput/output format� Command-line parameters besides srcfil.� Di�erent input format: new tokens, delimiters, and instruction formats.� Handle overlength lines robustly.Abstract machine� Change in word size, number of words in main memory.� New or extended data types, especially signed integers.� More registers, e.g., index registers.



242 Appendix A REQUIREMENTS SPECIFICATIONS� More or di�erent SHAM instructions.� More addressing modes.� Symbolic data and branch addresses.Platform� Di�erent operating system: other UNIX platforms or MS-DOS.Exception handling� Limits on the number of exceptions reported or instructions executed.� Changes in the conditions de�ning exceptions and in the message text.A.1.8 Sample programsCalculate 2 + 2 and display the resultloadcon 2store 8add 8printhaltCalculate �ni=0i and display the resultloadcon 5 initial value of nstore 40 location 40: value of n, decremented each iterationloadcon 0store 41 location 41: value of sumloadcon 1store 42 location 42: 1, used for decrementingload 40brz 28 check if 0add 41 add to the sumstore 41load 40 subtract 1 from nsub 42store 40br 14load 41 print value of sumprinthalt



A.1. BSHAM REQUIREMENTS SPECIFICATION 243A.1.9 Tables Table A.1 Language syntax tableMnemonic I:source I:object Operand typeMemory accessLOAD load 0 shamaddrTSTORE store 1 shamaddrTArithmeticADD add 2 shamaddrTSUBTRACT sub 3 shamaddrTBranchBRANCH br 4 shamaddrTBRANCHZERO brz 5 shamaddrTBRANCHPOS brp 6 shamaddrTMiscellaneousLOADCON loadcon 7 shamintegerTPRINT print 8HALT halt 9Table A.2 Language semantics table (op = mem[pc+ 1])Instruction at mem[pc] E�ect on mem, acc, and pcMemory accessLOAD:object acc; pc := mem[op]; (pc+ 2) modMEMSIZSTORE:object mem[op]; pc := acc; (pc+ 2) modMEMSIZArithmeticADD:object acc; pc := acc+mem[op]; (pc+ 2) modMEMSIZSUBTRACT:object acc; pc := acc�mem[op]; (pc+ 2) modMEMSIZBranchBRANCH:object pc := opBRANCHZERO:object pc := (acc = 0) opj acc > 0) (pc+ 2) modMEMSIZ)BRANCHPOS:object pc := (acc > 0) opj acc = 0) (pc+ 2) modMEMSIZ)MiscellaneousLOADCON:object acc; pc := op; (pc+ 2) modMEMSIZPRINT:object pc := (pc+ 1) modMEMSIZHALT:object no change to acc; pc;mem



244 Appendix A REQUIREMENTS SPECIFICATIONSTable A.3 Load-phase exception tableLet L be the current line, with line number n (numbered one-relative).Let T1; T2; : : : ; TK be the tokens in L.Condition MessageK = 0 (L is blank) excmsg(BLANKLINEXC;n; "")K > 0T1 2 op0sourceT Normal caseT1 2 op1sourceTK = 1 excmsg(MISSINGOPEXC;n; "")K > 1T1 = LOADCON:sourceT2 2 shamintegerT Normal caseT2 62 shamintegerT excmsg(OPFMTEXC;n; T2)T1 6= LOADCON:sourceT2 2 shamaddrT Normal caseT2 62 shamaddrT excmsg(OPFMTEXC;n; T2)T1 62 sourceT excmsg(SOURCEEXC;n; T1)Table A.4 Execution-phase exception tableLet i = mem[pc] and op = mem[pc+ 1]Condition Messagei 2 op0objectT Normal casei 2 op1objectTpc 2 [0::MEMSIZ � 2]i = LOADCON:object Normal casei 6= LOADCON:objectop 2 shamaddrTi = ADD:objectacc+mem[op] 2 shamintegerT Normal caseacc+mem[op] 62 shamintegerT excmsg(ARITHEXC;pc; "")i = SUBTRACT:objectacc�mem[op] 2 shamintegerT Normal caseacc�mem[op] 62 shamintegerT excmsg(ARITHEXC;pc; "")true Normal caseop 62 shamaddrT excmsg(ADDREXC;pc; op)pc =MEMSIZ � 1 excmsg(NOOPEXC; pc; "")i 62 objectT excmsg(OBJECTEXC;pc; i)



A.2. ISHAM REQUIREMENTS SPECIFICATION 245A.2 ISHAM Requirements Speci�cationA.2.1 OverviewA.2.1.1 System overviewThis document speci�es the behavior of ISHAM, the interactive version of SHAM.The ISHAM and BSHAM load phases are identical, as are the language syntaxand semantics, but the execution phases di�er in two ways. In ISHAM:1. Object code execution is \single-stepped" under user control.2. Output is through a formatted screen, with main memory and the registersdisplayed, and updated after each instruction execution.A.2.1.2 Hardware and software environmentThe curses function library is required to perform output to the terminal screen.A.2.1.3 NotationNothing is added to the BSHAM Requirements Speci�cation.A.2.1.4 Document overviewBecause ISHAM and BSHAM have much in common, this document is writtenas an addendum to the BSHAM Requirements Speci�cation, describing only thedi�erences between ISHAM and BSHAM. Section A.2.2 declares the new envi-ronment variables: stdin to model keyboard input and scn to model the terminalscreen. A detailed format is provided to precisely describe screen updates. Sec-tion A.2.3 speci�es the ISHAM execution-phase FSM; the BSHAM load-phaseFSM is unchanged. Sections A.2.4{A.2.6 declare the constants, types, and func-tions used throughout this document. There are two new constants and nonew types or functions. Section A.2.7 lists the changes to ISHAM likely to berequested in the future.A.2.2 Environment variablesA.2.2.1 Input variablesstdin : stringUNIX standard inputA.2.2.2 Output variablesscn : sequence [24][80] ofcharscn[r][c] is the character at screen row r and column c,with numbering zero-relative and beginning at the upper-left corner.



246 Appendix A REQUIREMENTS SPECIFICATIONS012345678901234567890123456789012345678901234567890123456789012345678901************************************************************************SHAM0 1 2 3 4 5 6 7 8 9Main 0 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEMmemory: 10 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM20 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM30 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM40 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM50 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM60 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM70 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM80 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM90 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEMProgram counter: PCAccumulator: ACCLast value printed: PRTEnter command: 's' to single step; 'e' to exitMessage: MSG------------------------------------------------------------************************************************************************Figure A.3 Screen formatWe divide scn, a 24-by-80 array, into parts, as shown in Figure A.3. The non-blank areas are divided into screen �elds, either �xed or varying. The �xed �eldsare written when ISHAM execution begins and remain unchanged while ISHAMis running. The varying �elds may change repeatedly during ISHAM execution.Each varying �eld has an identi�er: MEM , PC, ACC, PRT , or MSG. Theextent of each varying �eld on the screen is the character positions occupied bythe �eld identi�er, and the trailing -s if present. When a MEM , PC, ACC,or PRT value is shorter than the extent shown, it is right-justi�ed and paddedleft with blanks; MSG values are left-justi�ed and padded right with blanks.Because the MEM �eld occurs 100 times on the screen, a particular MEMoccurrence is indicated by row and column subscripts, numbered zero-relative,top-down, and left-to-right. For example, MEM [9; 0] is the leftmost and lowestoccurrence.



A.2. ISHAM REQUIREMENTS SPECIFICATION 247A.2.3 State machineA.2.3.1 Command-line invocationISHAM is invoked by typingisham srcfilon the command line. Input is read from srcfil and stdin, and output is writtento stdout and scn.If the srcfil argument is not present,excmsg(NOFILEXC; 0; "")is written to stdout. If srcfil is unreadable (or does not exist),excmsg(FILSYSEXC; 0; srcfil)is written to stdout. If there are any command-line exceptions, ISHAM executionterminates.A.2.3.2 Load phaseSame as in the BSHAM Requirements Speci�cation.A.2.3.3 Execution phaseThe ISHAM execution-phase behavior is de�ned by the FSM in Figure A.4.A.2.4 ConstantsName ValueEXIT `e'STEP `s'CMDERRMSG "Illegal keyboard entry: type 's' or 'e'"HALTMSG "HALT instruction reached"A.2.5 TypesSame as in the BSHAM Requirements Speci�cation.A.2.6 FunctionsSame as in the BSHAM Requirements Speci�cation.



248 Appendix A REQUIREMENTS SPECIFICATIONS
InputsKeystrokes from stdin.OutputsAll outputs are to scn and its �elds.StatesSame as for the load phase FSM.Initial statemem;acc; pc := (the �nal value from the load phase FSM); 0; 0Transitions and outputsFor each character, c, from stdinif c = EXIT thenclear scnhalt ISHAM executionelse if c = STEP thenif the BSHAM Execution-phase Exception Table speci�esan exception for mem[pc] thenMSG := the speci�ed messageelse if mem[pc] = HALT:object thenMSG := HALTMSGelse MSG := ""if mem[pc] = PRINT:object thenPRT := accmodify mem, acc, pc, as per the BSHAM Language Semantics Tableelse MSG := CMDERRMSGNotes on screen updating:� Initially and between transitions, ensure that:1. The �xed �elds shown in the ISHAM screen format are displayed.2. MEM , PC, and ACC are such that(8r; c 2 [0::9])(MEM [r; c] = mem[10� r + c]) ^ ACC = acc ^ PC = pc3. MEM [pc=10; pc mod 10] is displayed in inverse video.� Initially the MSG and PRT �elds are blankFigure A.4 ISHAM execution-phase FSM



A.2. ISHAM REQUIREMENTS SPECIFICATION 249A.2.7 Expected changes1. The �eld positions and the contents of the �xed �elds will change.2. MEMSIZ will exceed 100 and vertical scrolling will be supported.3. Di�erent forms of stepping through the instructions will be supported,such as executing a speci�ed number of instructions or executing until aspeci�ed instruction is reached.





Appendix BModule GuideB.1 Module SummaryEach SHAM module has a unique long name and a short name, and may havea shorter module pre�x used to avoid name conicts in exported C identi�ers.format: long name (short name, pre�x)SHAM modulesBehavior hidingLoad (load, ld )Token (token, tk )Abstract Machine (absmach, am )Screen Driver (scndr, sd )Screen Geometry (scngeom, sg )Software decision hidingSHAM Coordinator (sham)Execute (exec, ex )Machine hidingKeyboard Input (keybdin, ki )Screen String (scnstr, ss )UNIX modulesctype, curses, stdio, string, strtod
251



252 Appendix B MODULE GUIDEB.2 Module Service and SecretB.2.1 Behavior-hiding modulesB.2.1.1 The load module� Service. Performs the load phase. Issues exception messages for incorrectinput and, for correct input, stores the resulting object code in the absmachmodule.� Secret. The details of the load-phase user interface, including the sourcelanguage concrete syntax and the exception messages.B.2.1.2 The token module� Service. Extracts tokens from a string supplied by the user. Tokens areretrieved sequentially, in the order they occur in the user's string. The useris given access to the token value (a string) and the token type (integer,identi�er, or unknown).� Secret. The rules governing token types and token separators.B.2.1.3 The absmach module� Service. Implements the mem, acc, and pc state variables, as well as theLanguage Semantics Table from the SHAM Requirements Speci�cation.Following each instruction execution, the user is given a status indicatorand access to the state variables.� Secret. The SHAM language semantics, including the execution-phaseexceptions.B.2.1.4 The scndr module� Service. Updates the terminal screen, using the values stored by absmachand according to the screen format described in the ISHAM RequirementsSpeci�cation.� Secret. The means used to accomplish screen updates.B.2.1.5 The scngeom module� Service. Provides the length, row, and column position for each screen�eld, as per the screen format in the SHAM Requirements Speci�cation.� Secret. Hides, until execution time, the length, row, and column values.



B.2. MODULE SERVICE AND SECRET 253B.2.2 Software decision{hiding modulesB.2.2.1 The sham module� Service. Uses the other modules to provide the load-and-go assemblerspeci�ed in the SHAM Requirements Speci�cation.� Secret. The way in which the other modules are used and the handlingof command-line parameters.B.2.2.2 The exec module� Service. Performs the execution phase, executing the program stored inabsmach and managing the run-time user interface, batch or interactive.� Secret. The way in which the other modules are used, and the format andcontent of the exception messages.B.2.3 Machine-hiding modulesB.2.3.1 The keybdin module� Service. Provides keyboard input, one character at a time, without echo-ing or waiting for carriage return.� Secret. The UNIX system services used to accomplish this task.B.2.3.2 The scnstr module� Service. Provides write access to the terminal screen. A string may bewritten to any position on the screen, the cursor may be moved to anyposition on the screen, and any screen position may be highlighted. Toallow for e�cient screen control, scnstr calls are bu�ered. An \applychanges to screen" access routine is provided; scnstr calls have no visiblee�ect on the screen until the apply routine is invoked.� Secret. The UNIX system services used to accomplish this task.





Appendix CModule InterfaceSpeci�cationsC.1 Global De�nitionsC.1.1 system.h#include <stdio.h>#include <string.h>/*****constants*****/#define SY_EXCFIL "SHAM.excfil"/*****types*****//*sham instructions*/typedef enum {SY_LOAD,SY_STORE,SY_ADD,SY_SUBTRACT,SY_BRANCH,SY_BRANCHZERO,SY_BRANCHPOS,SY_LOADCON,SY_PRINT,SY_HALT} sy_instr;/*****macros for number of operands*****/#define SY_OP0(cmd) \((int)cmd == (int)SY_PRINT || (int)cmd == (int)SY_HALT)#define SY_OP1(cmd) \((int)cmd >= (int)SY_LOAD && (int)cmd <= (int)SY_LOADCON)/*****variables*****/extern FILE *sy_excfilp; /*file for exception messages*/255



256 Appendix C MODULE INTERFACE SPECIFICATIONSC.2 BSHAM ModulesC.2.1 absmach MISC.2.1.1 Interface syntax#define AM MEMSIZ 100#define AM MAXINT 999typedef enum fAM NORMAL,AM HALT,AM PRINT,AM ARITHEXC,AM ADDREXC,AM OBJECTEXC,AM NOOPEXCg am stat;Routine names Inputs Outputs Exceptionsam s initam s acc int am intam g acc intam s pc int am addram g pc intam s mem int am addrint am intam g mem int int am addram sg exec am statC.2.1.2 Interface semanticsstate variablesmem : sequence [AM MEMSIZ] of [0::AM MAXINT]acc : [0::AM MAXINT]pc : [0::AM MEMSIZ� 1]state invariantnoneassumptionsam s init is called before any other access routine.access routine semanticsam s init:transition: acc; pc;mem := 0; 0;all zeroesexceptions: noneam s acc(i):transition: acc := iexceptions: exc := (i 62 [0::AM MAXINT]) am int)am g acc:output: out := accexceptions: noneam s pc(a):



C.2. BSHAM MODULES 257transition: pc := aexceptions: exc := (a 62 [0::AM MEMSIZ� 1]) am addr)am g pc:output: out := pcexceptions: noneam s mem(a; i):transition: mem[a] := iexceptions: exc := (a 62 [0::AM MEMSIZ � 1]) am addrj i 62 [0::AM MAXINT]) am int)am g mem(a):output: out := mem[a]exceptions: exc := (a 62 [0::AM MEMSIZ� 1]) am addr)am sg exec:transition-output:(an error is speci�ed in the Exec. Phase Exception Table )out := the error identi�erj mem[pc] = SY HALT ) out := AM HALTj mem[pc] = SY PRINT ) out; pc := AM PRINT; pc+ 1j true) out := AM NORMALacc; pc;mem := values speci�ed in the RS Lang. Sem. Table)exceptions: noneC.2.1.3 Header �le: absmach.h/*****constants*****/#define AM_MEMSIZ 100 /*memory size*/#define AM_MAXINT 999 /*maximum integer value*//*****types*****/typedef enum {AM_NORMAL,AM_HALT,AM_PRINT,AM_ARITHEXC,AM_ADDREXC,AM_OBJECTEXC,AM_NOOPEXC} am_stat;/*****access routines*****/void am_s_init();void am_s_acc();/* void am_s_acc(i)* int i;*/int am_g_acc();void am_s_pc();/* void am_s_pc(a)



258 Appendix C MODULE INTERFACE SPECIFICATIONS* int a;*/int am_g_pc();void am_s_mem();/* void am_s_mem(a,i)* int a,i;*/int am_g_mem();/* int am_g_mem(a)* int a;*/am_stat am_sg_exec();void am_g_dump(); /*for testing purposes only*//*****exception handlers*****/void am_addr();void am_int();C.2.2 exec MISC.2.2.1 Interface syntaxRoutine names Inputs Outputs Exceptionsex s initex s execC.2.2.2 Interface semanticsenvironment variablesscn the terminal screenstdoutUNIX standard outputstate variablesnonestate invariantnoneassumptions



C.2. BSHAM MODULES 259Before ex s exec is called, ex s init has been called andthe absmach module has been initialized.At compile time, exactly one of these preprocessor ags is de�ned:BSHAM, ISHAMaccess routine semanticsex s init:transition:if ag ISHAM is set theninitialize the screenexceptions: noneex s exec:transition:if ag BSHAM is set thenperform the execution phase as described in the BSHAM RSelse if ag ISHAM is set thenperform the execution phase as described in the ISHAM RSIn either case:� Use the mem, acc, and pc values stored in the absmach module� Invoke am sg exec to execute the next instruction� Use the am sg exec return value to determine whethera normal case or exception output is neededexceptions: noneC.2.2.3 Header �le: exec.h/*****constants*****//*****types*****//*****access routines*****/void ex_s_init();void ex_s_exec();/*****exception handlers*****/C.2.3 load MISC.2.3.1 Interface syntax#define typedef enum fLD NORMAL,LD ERRORg ld stat;Routine names Inputs Outputs Exceptionsld s initld sg load FILE� ld stat ld fil



260 Appendix C MODULE INTERFACE SPECIFICATIONSC.2.3.2 Interface semanticsenvironment variablesstdoutUNIX standard outputstate variablesnonestate invariantnoneassumptionsld s init is called before any other access routine.The absmach and token modules have been initialized.The argument to ld sg load points to an open �le control block.access routine semanticsld s init:transition: noneexceptions: noneld sg load(f): de�ned in terms of the SHAM Requirements Speci�cation.transition/output:(�le f has no load errors )absmach:mem := the object code version of the program in fout := LD NORMALj true)write the appropriate messages to stdoutout := LD ERROR)exceptions: exc := (error reading �le f ) ld fil)considerationsIn ld sg load(f), if f has load errors or if ld fil occurs,the value of absmach:mem is \dontcare."C.2.3.3 Header �le: load.h/*****constants*****//*****types*****/typedef enum {LD_NORMAL,LD_ERROR} ld_stat;typedef FILE *ld_filptr;/*****access routines*****/void ld_s_init();



C.2. BSHAM MODULES 261ld_stat ld_sg_load();/* ld_stat ld_sg_load(f);* ld_filptr f;*//*****exception handlers*****/void ld_fil();C.2.4 sham MISThere is no MIS for sham.C.2.5 token MISC.2.5.1 Interface syntax#define TK MAXSTRLEN 100#define TK MAXIDLEN 10#define TK MAXINTLEN 5typedef enum fTK ID,TK INT,TK BADTOKg tk toktyp;typedef struct fchar val[TK MAXSTRLEN+1];tk toktyp typ;g tk valtyp;Routine names Inputs Outputs Exceptionstk s inittk s str char� tk maxlentk sg next tk valtyp tk endtk g end booleanC.2.5.2 Interface semanticsstate variablestoklist : sequence of stringstate invariantnoneassumptionstk s init is called before any other access routine.All string parameters are legal C strings.access routine semanticstk s init:transition: toklist := hi



262 Appendix C MODULE INTERFACE SPECIFICATIONSexceptions: nonetk s str(s):transition: toklist := tokens(s)exceptions: exc := (jsj > TK MAXSTRLEN ) tk maxlen)tk sg next:transition/output: toklist; out :=toklist[1::jtoklistj � 1];htoklist[0]; toktyp(toklist[0])iexceptions: exc := (toklist = hi ) tk end)tk g end:output: out := (toklist = hi)exceptions: nonelocal typesidtoksetT = fs j s is a string of alphabetic or numeric characters ^s[0] is alphabetic ^ jsj 2 [1::TK MAXIDLEN]ginttoksetT = fs j s is a string of numeric characters ^ jsj 2 [1::TK MAXINTLEN]glocal functionstokens : string! sequence of stringtokens(s) returns the sequence of tokens in s where1. a token is a non-empty subsequence s[i::j] of s2. s[i::j] contains no blanks3. (i = 0 _ s[i � 1] = ` ') ^ (j = jsj � 1 _ s[j + 1] = ` ')toktyp : string! tk toktyptoktyp(s) :=(s 2 idtoksetT ) TK IDj s 2 inttoksetT ) TK INTj true) TK BADTOK)C.2.5.3 Header �le: token.h/*****constants*****/#define TK_MAXSTRLEN 100 /*maximum length of an input string*/#define TK_MAXIDLEN 10 /*maximum length of an id token*/#define TK_MAXINTLEN 5 /*maximum length of an integer token*//*****types*****/typedef enum {TK_ID,TK_INT,TK_BADTOK} tk_toktyp;typedef struct {char val[TK_MAXSTRLEN+1];tk_toktyp typ;} tk_valtyp;



C.3. ISHAM MODULES 263/*****access routines*****/void tk_s_init();void tk_s_str();/* void tk_s_str(str)* char *str;*/void tk_sg_next(); /*out value returned using call-by-reference*//* void tk_sg_next(valtyp);* tk_valtyp *valtyp; NOTE: caller must allocate *valtyp*//*boolean*/ int tk_g_end();void tk_g_dump(); /*for testing purposes only*//*****exception handlers*****/void tk_end();void tk_maxlen();C.3 ISHAM ModulesC.3.1 keybdin MISC.3.1.1 Interface syntaxRoutine names Inputs Outputs Exceptionski s initki sg next charki s endC.3.1.2 Interface semanticsenvironment variablesstdin : stringUNIX standard inputstate variablesnonestate invariantnone



264 Appendix C MODULE INTERFACE SPECIFICATIONSassumptionsThe curses module has been initialized.Calls to keybdin obey the following pattern:(ki s init:ki sg next � :ki s end)�, where X� indicates zero or more occurrences of Xaccess routine semanticski s init:transition: turn o� keystroke echoingexceptions: noneki sg next:transition-output: out := the next available characterexceptions: noneki s end:transition: turn on keystroke echoingexceptions: noneconsiderations� Keystrokes are returned by ki sg next in �rst-in{�rst-out order.� Characters are returned immediately, without waiting for a newline.� If, on entry, there is no new keystroke available, ki sg next will not return untilanother keystroke occurs.C.3.1.3 Header �le: keybdin.h/*****constants*****//*****types*****//*****access routines*****/void ki_s_init();char ki_sg_next();void ki_s_end();/*****exception handlers*****/



C.3. ISHAM MODULES 265C.3.2 scndr MISC.3.2.1 Interface syntaxRoutine names Inputs Outputs Exceptionssd s initsd s clrscnsd s consd s memsd s pcsd s accsd s prt intsd s msg char�sd s hlt intbooleanC.3.2.2 Interface semanticsenvironment variablesscn the terminal screenstate variablesnonestate invariantnoneassumptionssd s init is called before any other access routine.The absmach, scnstr, and scngeom modules have been initialized.The address passed to sd s hlt is a legal address.access routine semanticsNote: MEM , PC, ACC, PRT , and MSG are screen �elds from the ISHAM RS.sd s init:transition: noneexceptions: nonesd s clrscn:transition: clear terminal screenexceptions: nonesd s con:transition: display the �xed screen �eldsexceptions: nonesd s mem:transition:(8r; c 2 [0::9])MEM [r; c] := am g mem(10 � r + c),converted to ASCII, right justi�ed and padded left with blanks



266 Appendix C MODULE INTERFACE SPECIFICATIONSexceptions: nonesd s pc:transition: PC := am g pc, converted to ASCII,right justi�ed and padded left with blanksexceptions: nonesd s acc:transition: ACC := am g acc, converted to ASCII,right justi�ed and padded left with blanksexceptions: nonesd s prt(x):transition: PRT := x, converted to ASCII,right justi�ed and padded left with blanksexceptions: nonesd s msg(s):transition: MSG := s, left justi�ed and padded right with blanksexceptions: nonesd s hlt(a; f):transition:(f = true) display MEM [a=10; a%10] in inverse videoj f = false) display MEM [a=10; a%10] normally)exceptions: noneconsiderationsFor each �eld displayed by scndr, the value is truncated to the �eldlength returned by scngeom.C.3.2.3 Header �le: scndr.h/*****constants*****//*****types*****//*****access routines*****/void sd_s_init();void sd_s_clrscn();void sd_s_con();void sd_s_mem();void sd_s_pc();void sd_s_acc();void sd_s_prt();/* void sd_s_prt(i)



C.3. ISHAM MODULES 267* int i;*/void sd_s_msg();/* void sd_s_msg(s)* char *s;*/void sd_s_hlt();/* void sd_s_hlt(a,f)* int a;* (boolean) int f;*//*****exception handlers*****/C.3.3 scngeom MISC.3.3.1 Interface syntax#define SG NUMROW 24#define SG NUMCOL 80typedef enum fSG MEM,SG PC,SG ACC,SG PRT,SG MSG,SG SCNTTL,SG MEMTTL1,SG MEMTTL2,SG MEMCOLHDR,SG MEMROWHDR,SG PCTTL,SG ACCTTL,SG PRTTTL,SG PROMPTTTL,SG MSGTTLg sg fldnam;typedef struct fsg fldnam nam;int row;int col;g sg fld;Routine names Inputs Outputs Exceptionssg s initsg g legfld sg fld booleansg g row sg fld int sg badfldsg g col sg fld int sg badfldsg g len sg fld int sg badfldsg g val sg fld char� sg badfld



268 Appendix C MODULE INTERFACE SPECIFICATIONSC.3.3.2 Interface semanticsLegal Legal Associated �eld inIdenti�er row values column values ISHAM RSVariable �eldsSG MEM [0::9] [0::9] MEMSG PC 0 0 PCSG ACC 0 0 ACCSG PRT 0 0 PRTSG MSG 0 0 MSGFixed �eldsSG SCNTTL 0 0 Screen titleSG MEMTTL1 0 0 MEM title line 1SG MEMTTL2 0 0 MEM title line 2SG MEMCOLHDR 0 [0::9] MEM column headerSG MEMROWHDR [0::9] 0 MEM row headerSG PCTTL 0 0 PC titleSG ACCTTL 0 0 ACC titleSG PRTTTL 0 0 PRT titleSG PROMPTTTL 0 0 Prompt titleSG MSGTTL 0 0 Error message titlestate variablesnonestate invariantnoneassumptionssg s init is called before any other access routineaccess routine semanticssg s init:transition: noneexceptions: nonesg g legfld(fld):output: out := (fld is a legal �eld identi�er)exceptions: nonesg g row(fld):output: out := starting screen row for fld, zero-relativeexceptions: exc := (fld is not a legal �eld identi�er ) sg badfld)sg g col(fld):output: out := starting screen column for fld, zero-relativeexceptions: exc := (fld is not a legal �eld identi�er ) sg badfld)sg g len(fld):output: out := length of fldexceptions: exc := (fld is not a legal �eld identi�er ) sg badfld)sg g val(fld):output: out :=



C.3. ISHAM MODULES 269(fld is a �xed screen �eld ) as shown in the RSj fld is a variable screen �eld ) "")exceptions: exc := (fld is not a legal �eld identi�er ) sg badfld)C.3.3.3 Header �le: scngeom.h/*****constants*****/#define SG_NUMROW 24 /*number of rows on the screen*/#define SG_NUMCOL 80 /*number of columns on the screen*//*****types*****/typedef enum {SG_MEM,SG_PC,SG_ACC,SG_PRT,SG_MSG,SG_SCNTTL,SG_MEMTTL1,SG_MEMTTL2,SG_MEMCOLHDR,SG_MEMROWHDR,SG_PCTTL,SG_ACCTTL,SG_PRTTTL,SG_PROMPTTTL,SG_MSGTTL} sg_fldnam;typedef struct {sg_fldnam nam;int row;int col;} sg_fld;/*****access routines*****/void sg_s_init();/*boolean*/ int sg_g_legfld();/* int sg_g_legfld(fld)* sg_fld fld;*/int sg_g_row();/* int sg_g_row(fld)* sg_fld fld;*/int sg_g_col();/* int sg_g_col(fld)* sg_fld fld;*/int sg_g_len();/* int sg_g_len(fld)* sg_fld fld;*/



270 Appendix C MODULE INTERFACE SPECIFICATIONSchar *sg_g_val();/* char *sg_g_val(fld)* sg_fld fld;*//*****exception handlers*****/void sg_badfld();C.3.4 scnstr MISC.3.4.1 Interface syntax#define SS NUMROW 24#define SS NUMCOL 80Routine names Inputs Outputs Exceptionsss s initss s clrscnss s str int ss rowint ss colchar� ss lenss s hlt int ss rowint ss colint ss lenbooleanss s cur int ss rowint ss colss s refss s endC.3.4.2 Interface semanticsenvironment variablesscn : sequence [SS NUMROW][SS NUMCOL] of charscn[r][c] is the character at screen row r and column c,with numbering zero-relative and beginning at the upper-left cornerhlt : sequence [SS NUMROW][SS NUMCOL] of booleanhlt[r][c] is true if the position at screen row r and column c is highlighted,with numbering zero-relative and beginning at the upper-left cornercur : tuple of (row : [0::SS NUMROW� 1]; col : [0::SS NUMCOL� 1])the terminal cursor is at screen row cur:row and column cur:colwith numbering zero-relative and beginning at the upper-left cornerstate variablesscnbuf : sequence [SS NUMROW][SS NUMCOL] of charhltbuf : sequence [SS NUMROW][SS NUMCOL] of boolean



C.3. ISHAM MODULES 271curbuf : tuple of (row : [0::SS NUMROW� 1]; col : [0::SS NUMCOL � 1])state invariantnoneassumptionsThe curses module has been initialized.Calls to scnstr obey the following pattern:(ss s init:T � :ss s end)�, whereT is any call other than ss s init or ss s endX� indicates zero or more occurrences of XString parameters are legal C strings.access routine semanticsss s init:transition: noneexceptions: noness s clrscn:transition: scnbuf; hltbuf; curbuf := all ' '; allfalse; h0; 0iexceptions: noness s str(row; col; s):transition: (jsj > 0) scnbuf [row][col::col + jsj � 1] := s)exceptions: exc :=(row 62 [0::SS NUMROW� 1]) ss rowj col 62 [0::SS NUMCOL � 1]) ss colj jsj 62 [0::SS NUMCOL� col]) ss len)ss s hlt(row; col; l; f):transition: (l > 0) hltbuf [row][col::col + l� 1] := f)exceptions: exc :=(row 62 [0::SS NUMROW� 1]) ss rowj col 62 [0::SS NUMCOL � 1]) ss colj l 62 [0::SS NUMCOL� col]) ss len)ss s cur(row; col):transition: curbuf := hrow; coliexceptions: exc :=(row 62 [0::SS NUMROW� 1]) ss rowj col 62 [0::SS NUMCOL � 1]) ss col)ss s ref:transition: scn; hlt; cur := scnbuf; hltbuf; curbufexceptions: noness s end:transition: noneexceptions: noneconsiderationsss s str and ss s hlt may alter the value of curbuf .



272 Appendix C MODULE INTERFACE SPECIFICATIONSC.3.4.3 Header �le: scnstr.h/*****constants*****/#define SS_NUMROW 24 /*number of rows on the screen*/#define SS_NUMCOL 80 /*number of columns on the screen*//*****types*****//*****access routines*****/void ss_s_init();void ss_s_clrscn();void ss_s_str();/* void ss_s_str(r,c,s)* int r,c;* char *s;*/void ss_s_hlt();/* void ss_s_hlt(r,c,l,f)* int r,c,l;* (boolean) int f;*/void ss_s_cur();/* void ss_s_cur(r,c)* int r,c;*/void ss_s_ref();void ss_s_end();/*****exception handlers*****/void ss_row();void ss_col();void ss_len();



C.4. DEMONSTRATION MODULES 273C.4 Demonstration ModulesC.4.1 stack MISC.4.1.1 Interface syntax#define PS MAXSIZ 100Routine names Inputs Outputs Exceptionsps s initps s push int ps fullps s pop ps emptyps g top int ps emptyps g depth intC.4.1.2 Interface semanticsstate variabless : sequence of integerstate invariantjsj � PS MAXSIZassumptionsps s init is called before any other access routine.access routine semanticsps s init:transition: s := hiexceptions: noneps s push(x):transition: s := s k hxiexceptions: exc := (jsj = PS MAXSIZ ) ps full)ps s pop:transition: s := s[0::jsj � 2]exceptions: exc := (jsj = 0) ps empty)ps g top:output: out := s[jsj � 1]exceptions: exc := (jsj = 0) ps empty)ps g depth:output: out := jsjexceptions: noneC.4.1.3 Header �le: stack.h/*****constants*****/#define PS_MAXSIZ 100 /*the maximum stack size*/



274 Appendix C MODULE INTERFACE SPECIFICATIONS/*****types*****//*****access routines*****/void ps_s_init();void ps_s_push();/* void ps_s_push(i);* int i;*/void ps_s_pop();int ps_g_top();int ps_g_depth();void ps_g_dump(); /*for testing purposes only*//*****exception handlers*****/void ps_empty();void ps_full();C.4.2 symtbl MISC.4.2.1 Interface syntax#define ST MAXSYMS 50#define ST MAXSYMLEN 20Routine names Inputs Outputs Exceptionsst s initst s add char� st maxlenint st exsymst fullst g exsym char� booleanst s loc char� st notexsymintst g loc char� int st notexsymst g siz intC.4.2.2 Interface semanticsstate variablestbl : set of tuple of (sym : string; loc : integer)



C.4. DEMONSTRATION MODULES 275state invariant1. jtblj � ST MAXSYMS2. (8t 2 tbl)(jt:symj � ST MAXSYMLEN)3. (8t1; t2 2 tbl)(t1 6= t2 ! t1:sym 6= t2:sym)assumptionsst s init is called before any other access routine.All string parameters are legal C strings.access routine semanticsst s init:transition: tbl := fgexceptions: nonest s add(sym; loc):transition: tbl := tbl [ fhsym; locigexceptions: exc := (jsymj > ST MAXSYMLEN ) st maxlenj (9loc1)(hsym; loc1i 2 tbl)) st exsymj jtblj = ST MAXSYMS ) st full)st g exsym(sym):output: out := (9loc)(hsym; loci 2 tbl)exceptions: nonest s loc(sym; loc):transition: tbl := (tbl� fhsym; loc1ig) [ fhsym; locig where hsym; loc1i 2 tblexceptions: exc := (:(9loc1)(hsym; loc1i 2 tbl)) st notexsym)st g loc(sym):output: out := loc, where hsym; loci 2 tblexceptions: exc := (:(9loc)(hsym; loci 2 tbl)) st notexsym)st g siz:output: out := jtbljexceptions: noneC.4.2.3 Header �le: symtbl.h/*****constants*****/#define ST_MAXSYMS 50 /*maximum number of symbols*/#define ST_MAXSYMLEN 20 /*maximum symbol length*//*****types*****//*****access routines*****/void st_s_init();void st_s_add();/* void st_s_add(sym,loc);* char *sym;* int loc;



276 Appendix C MODULE INTERFACE SPECIFICATIONS*/int st_g_siz();/*boolean*/ int st_g_exsym();/* int st_g_exsym(sym);* char *sym;*/void st_s_loc();/* void st_g_loc(sym,loc);* char *sym;* int loc;*/int st_g_loc();/* int st_g_loc(sym);* char *sym;*/void st_g_dump(); /*for testing purposes only*//*****exception handlers*****/void st_exsym();void st_maxlen();void st_notexsym();void st_full();



Appendix DModule Internal DesignsD.1 BSHAM ModulesD.1.1 absmach MIDstate variablesint acc,pc;int mem[AM MEMSIZ];state invariant1. acc 2 [0::AM MAXINT]2. pc 2 [0::AM MEMSIZ� 1]3. (8i 2 [0::AM MEMSIZ� 1])(mem[i] 2 [0::AM MAXINT])considerationsSince the abstract and concrete states are identical, the abstraction function andthe access routine semantics are omitted.D.1.2 exec MIDThere is no MID for exec.D.1.3 load MIDThere is no MID for load.D.1.4 sham MIDThere is no MID for sham. 277



278 Appendix D MODULE INTERNAL DESIGNSD.1.5 token MIDstate variableschar buf[TK MAXSTRLEN+2];int cur;state invariant1. buf[0::TK MAXSTRLEN+ 1] contains a null.2. cur 2 [0::leftnull(buf)]3. cur < leftnull(buf)! (buf[cur] 6= ' ' ^ buf[leftnull(buf)� 1] = ' ')abstraction functiontoklist = the sequence of tokens in buf[cur::leftnull(buf)� 1]access routine semanticstk s init:transition: buf; cur := ""; 0exceptions: nonetk s str(s):transition:buf := (there is a token in s[0::leftnull(s)� 1]) rmblanks(s) k " "j true) "")cur := 0exceptions: exc := (jsj > TK MAXSTRLEN) tk maxlen)tk sg next:transition/output:Let curtok be the token beginning at buf[cur]curtoktyp be the token type of curtokout := hcurtok; curtoktypicur := (there is a token, beginning at position i,in buf[cur+ jcurtokj+ 1::leftnull(buf)� 1]) ij true) leftnull(buf))exceptions: exc := (buf[cur] = null) tk end)tk g end:output: out := (buf[cur] = null)exceptions: nonelocal functionsleftnull : string ! integerleftnull(s) := (there is a null in s) the index of the leftmost one)rmblanks : string ! stringrmblanks(s) := s, with leading blanks removed



D.3. DEMONSTRATION MODULES 279D.2 ISHAM ModulesD.2.1 keybdin MIDThere is no MID for keybdin.D.2.2 scndr MIDThere is no MID for scndr.D.2.3 scngeom MIDThere is no MID for scngeom.D.2.4 scnstr MIDThere is no MID for scnstr.D.3 Demonstration ModulesD.3.1 stack MIDstate variablesint stack[PS MAXSIZ];int siz;state invariantsiz 2 [0::PS MAXSIZ]abstraction functionjsj = siz ^ (8i 2 [0::siz� 1])(s[i] = stack[i])access routine semanticsps s init:transition: siz := 0exceptions: noneps s push(x):transition: stack[siz]; siz := x; siz+ 1exceptions: exc := (siz = PS MAXSIZ) ps full)ps s pop:transition: siz := siz� 1exceptions: exc := (siz = 0) ps empty)ps g top:output: out := stack[siz� 1]exceptions: exc := (siz = 0) ps empty)



280 Appendix D MODULE INTERNAL DESIGNSps g depth:output: out := sizexceptions: noneD.3.2 symtbl MIDstate variablesstruct fchar sym[ST MAXSYMLEN+1];int loc;g tbl[ST MAXSYMS];int tblcnt;state invariant1. Every symbol in tbl[0::tblcnt� 1] contains a null.2. There are no duplicate symbols in tbl[0::tblcnt� 1].3. tblcnt 2 [0::ST MAXSYMS]abstraction functiontbl = fhsym; loci j (9i 2 [0::tblcnt� 1])(sym = tbl[i]:sym ^ loc = tbl[i]:loc)gaccess routine semanticsst s init:transition: tblcnt := 0exceptions: nonest s add(sym; loc):transition: tblcnt; tbl[tblcnt] := tblcnt+ 1; hsym; lociexceptions: exc := (jsymj > ST MAXSYMLEN) st maxlenj findsym(sym) 6= NOTFOUND) st exsymj tblcnt = ST MAXSYMS) st full)st g exsym(sym):output: out := (findsym(sym) 6= NOTFOUND)exceptions: nonest s loc(sym; loc):transition: tbl[findsym(sym)]:loc := locexceptions: exc := (findsym(sym) = NOTFOUND) st notexsym)st g loc(sym):output: out := tbl[findsym(sym)]:locexceptions: exc := (findsym(sym) = NOTFOUND) st notexsym)st g siz:output: out := tblcntexceptions: nonelocal constants



D.3. DEMONSTRATION MODULES 281#define NOTFOUND -1local functionsfindsym : string ! integerfindsym(s) = ((9i 2 [0::tblcnt� 1])(s = tbl[i]:sym)) ij true) NOTFOUND)





Appendix EModule ImplementationsE.1 BSHAM ModulesE.1.1 absmach MIE.1.1.1 Module implementation: absmach.c#include "system.h"#include "absmach.h"/*****constants*****//*****types*****//*****module state*****/static int acc; /*accumulator*/static int pc; /*program counter*/static int mem[AM_MEMSIZ]; /*memory*//*****local functions*****//*out := (state invariant holds =>* (an exception is specified in Execution-phase Exception Table of RS* => the associated exception identifier* | true => AM_NORMAL))*/static am_stat execexc(){ sy_instr cmd;int op;if (SY_OP0(mem[pc]))return(AM_NORMAL); 283



284 Appendix E MODULE IMPLEMENTATIONSif (SY_OP1(mem[pc])) {cmd = (sy_instr)mem[pc];if (pc < AM_MEMSIZ-1) {op = mem[pc+1];if (cmd == SY_LOADCON)return(AM_NORMAL);/*we know that cmd != SY_LOADCON*/if (op >= 0 && op <= AM_MEMSIZ-1) {if (cmd == SY_ADD) {if (acc+mem[op] <= AM_MAXINT)return(AM_NORMAL);else return(AM_ARITHEXC);} else if (cmd == SY_SUBTRACT) {if (acc-mem[op] >= 0)return(AM_NORMAL);else return(AM_ARITHEXC);} elsereturn(AM_NORMAL);}/*we know that op not in shamaddrT*/return(AM_ADDREXC);}/*we know that pc == AM_MEMSIZ-1*/return(AM_NOOPEXC);}/*we know that mem[pc] not in objectT*/return(AM_OBJECTEXC);}/*****access routines*****/void am_s_init(){ int i;acc = 0;pc = 0;for (i = 0; i < AM_MEMSIZ; i++)mem[i] = 0;return;}void am_s_acc(i)int i;{ if (i < 0 || i > AM_MAXINT) {



E.1. BSHAM MODULES 285am_int();return;}acc = i;return;}int am_g_acc(){ return(acc);}void am_s_pc(a)int a;{ if (a < 0 || a > AM_MEMSIZ-1) {am_addr();return;}pc = a;return;}int am_g_pc(){ return(pc);}void am_s_mem(a,i)int a,i;{ if (a < 0 || a > AM_MEMSIZ-1) {am_addr();return;}if (i < 0 || i > AM_MAXINT) {am_int();return;}mem[a] = i;return;}int am_g_mem(a)int a;{ if (a < 0 || a > AM_MEMSIZ-1) {am_addr();



286 Appendix E MODULE IMPLEMENTATIONSreturn(0);}return(mem[a]);}am_stat am_sg_exec(){ am_stat stat;sy_instr cmd;int op;stat = execexc();if (stat != AM_NORMAL)return(stat);cmd = (sy_instr)mem[pc];if (cmd == SY_HALT)return(AM_HALT);if (cmd == SY_PRINT) {pc = (pc+1) % AM_MEMSIZ;return(AM_PRINT);}op = mem[pc+1];switch (cmd) {case SY_LOAD:acc = mem[op];pc = (pc+2) % AM_MEMSIZ;break;case SY_STORE:mem[op] = acc;pc = (pc+2) % AM_MEMSIZ;break;case SY_ADD:acc = acc+mem[op];pc = (pc+2) % AM_MEMSIZ;break;case SY_SUBTRACT:acc = acc-mem[op];pc = (pc+2) % AM_MEMSIZ;break;case SY_BRANCH:pc = op;break;case SY_BRANCHZERO:if (acc == 0)pc = op;else if (acc > 0)pc = (pc+2) % AM_MEMSIZ;break;



E.1. BSHAM MODULES 287case SY_BRANCHPOS:if (acc > 0)pc = op;else if (acc == 0)pc = (pc+2) % AM_MEMSIZ;break;case SY_LOADCON:acc = op;pc = (pc+2) % AM_MEMSIZ;break;}return(AM_NORMAL);}void am_g_dump(){ int id;printf ("acc=%d!pc=%d!\n",acc,pc);for (id = 0; id < AM_MEMSIZ; id++) {if (id%10 == 0)printf("%d: ",id);printf("%d ",mem[id]);if ((id+1)%10 == 0)printf("\n");}}E.1.1.2 Default exception handlers: absmach e.c#include "system.h"#include "absmach.h"void am_addr(){ fprintf(sy_excfilp,"Exception am_addr occurred\n");}void am_int(){ fprintf(sy_excfilp,"Exception am_int occurred\n");}E.1.2 exec MIE.1.2.1 Module implementation: exec.c#include "system.h"



288 Appendix E MODULE IMPLEMENTATIONS#include "absmach.h"#include "exec.h"#ifdef ISHAM#include "keybdin.h"#include "scngeom.h"#include "scndr.h"#endif/*****constants*****/#define STEP 's'#define EXIT 'e'/*****types*****//*****module state*****//*****local functions*****//*buf := the exception message corresponding to exception identifier* excid and program counter pc*/void excmsg(excid,pc,buf)am_stat excid;int pc;char *buf;{ char tmpbuf[80];sprintf(buf,"Execution exception at %d. ",pc);switch (excid) {case AM_ADDREXC:sprintf(tmpbuf,"Illegal operand: %d",am_g_mem(pc+1));break;case AM_ARITHEXC:sprintf(tmpbuf,"Arithmetic overflow");break;case AM_NOOPEXC:sprintf(tmpbuf,"Operand not accessible");break;case AM_OBJECTEXC:sprintf(tmpbuf,"Illegal instruction: %d",am_g_mem(pc));break;}strcat(buf,tmpbuf);}/*****access routines*****/



E.1. BSHAM MODULES 289void ex_s_init(){ return;}void ex_s_exec(){ am_stat stat;char buf[80];#ifdef ISHAMchar ch;int oldpc;#endifam_s_acc(0);am_s_pc(0);#ifdef BSHAMstat = am_sg_exec();while (stat == AM_NORMAL || stat == AM_PRINT) {if (stat == AM_PRINT)printf("%d\n",am_g_acc());stat = am_sg_exec();}if (stat != AM_HALT) {excmsg(stat,am_g_pc(),buf);printf("%s\n",buf);}#else/*clear screen, display constants*/sd_s_clrscn();sd_s_con();/*display initial values*/sd_s_mem();sd_s_acc();sd_s_pc();/*highlight current instruction*/sd_s_hlt(am_g_pc(),1);ch = ki_sg_next();while (ch != EXIT) {if (ch == STEP) {oldpc = am_g_pc();stat = am_sg_exec();if (stat != AM_PRINT && stat != AM_NORMAL &&stat != AM_HALT) {excmsg(stat,am_g_pc(),buf);sd_s_msg(buf);} else if (stat == AM_HALT) {



290 Appendix E MODULE IMPLEMENTATIONSsd_s_msg("HALT instruction reached");} else {/*update screen*/sd_s_msg("");if (stat == AM_PRINT)sd_s_prt(am_g_acc());sd_s_mem();sd_s_acc();sd_s_pc();/*update highlighting of cursor*/sd_s_hlt(oldpc,0);sd_s_hlt(am_g_pc(),1);}} elsesd_s_msg("Illegal keyboard entry: type \"s\" or \"e\".");ch = ki_sg_next();}/*clear screen*/sd_s_clrscn();#endif}E.1.2.2 Default exception handlersThere are no exceptions for exec.E.1.3 load MIE.1.3.1 Module implementation: load.c#include "system.h"#include "load.h"#include "absmach.h"#include "token.h"/*****constants*****//*****types*****/typedef enum{OPFMTEXC,SOURCEEXC,BLANKLINEXC,MISSINGOPEXC,NOMEMEXC} excid_t;/*****module state*****//*****local functions*****//*out,instr :=* ((exists i)(s = i.source) => true,i



E.1. BSHAM MODULES 291* | true => false,SY_HALT)*/static int getinstr(s,instr)char s[];sy_instr *instr;{ static struct {char *src;sy_instr instr;} tbl[] = {{"load",SY_LOAD},{"store",SY_STORE},{"add",SY_ADD},{"sub",SY_SUBTRACT},{"br",SY_BRANCH},{"brz",SY_BRANCHZERO},{"brp",SY_BRANCHPOS},{"loadcon",SY_LOADCON},{"print",SY_PRINT},{"halt",SY_HALT},{NULL,SY_HALT} /*terminator*/};int i;i = 0;while (tbl[i].src) {if (!strcmp(s,tbl[i].src)) {*instr = tbl[i].instr;return(1);}i++;}*instr = SY_HALT;return(0);}/*write to stdout the message corresponding to the exception identifier* in the first argument, with line number lin, and token tok*/static void excmsg(excid,lin,tok)excid_t excid;int lin;char tok[];{ switch (excid) {case BLANKLINEXC:printf("Load exception at %d. Blank line illegal\n",lin);break;



292 Appendix E MODULE IMPLEMENTATIONScase MISSINGOPEXC:printf("Load exception at %d. Operand missing\n",lin);break;case NOMEMEXC:printf("Load exception at %d. Program too large\n",lin);break;case OPFMTEXC:printf("Load exception at %d. Illegal operand: %s\n",lin,tok);break;case SOURCEEXC:printf("Load exception at %d. Illegal instruction: %s\n",lin,tok);break;}}/*(line number lin, consisting of the string buf, contains an error =>* write the appropriate message to stdout* out := LD_ERROR* | true =>* *instr := SHAM instruction in buf* *arg := argument, if any, to the instruction* out := LD_NORMAL)*/static ld_stat parse(buf,lin,instr,arg)char buf[];int lin,*arg;sy_instr *instr;{ tk_valtyp tok;tk_s_str(buf);if (tk_g_end()) {excmsg(BLANKLINEXC,lin,"");return(LD_ERROR);}/*we know that there is at least one token*/tk_sg_next(&tok);if (getinstr(tok.val,instr)) {if (SY_OP0(*instr))return(LD_NORMAL);/*we know that SY_OP1(*instr)*/if (tk_g_end()) {excmsg(MISSINGOPEXC,lin,"");return(LD_ERROR);}/*we know that there is more than one token*/tk_sg_next(&tok);



E.1. BSHAM MODULES 293if (tok.typ != TK_INT) {excmsg(OPFMTEXC,lin,tok.val);return(LD_ERROR);}*arg = atoi(tok.val);if (*instr == SY_LOADCON) {if (*arg >= 0 && *arg <= AM_MAXINT)return(LD_NORMAL);else {excmsg(OPFMTEXC,lin,tok.val);return(LD_ERROR);}} else {if (*arg >= 0 && *arg < AM_MEMSIZ)return(LD_NORMAL);else {excmsg(OPFMTEXC,lin,tok.val);return(LD_ERROR);}}}/*we know that tok.val not in sourceT*/excmsg(SOURCEEXC,lin,tok.val);return(LD_ERROR);}/*****access routines*****/void ld_s_init(){ return;}ld_stat ld_sg_load(f)ld_filptr f;{ char buf[TK_MAXSTRLEN+2]; /*extra characters needed for fgets*/int index,lin,arg;ld_stat stat;sy_instr instr;index = 0;lin = 0;stat = LD_NORMAL;while (fgets(buf,TK_MAXSTRLEN+2,f) != NULL) {/*fgets stores newline character, which must be eliminated*/buf[strlen(buf)-1] = '\0';lin++;



294 Appendix E MODULE IMPLEMENTATIONSif (parse(buf,lin,&instr,&arg) == LD_ERROR)stat = LD_ERROR;else if (stat == LD_NORMAL) {if (index < AM_MEMSIZ-1 ||(index == AM_MEMSIZ-1 && SY_OP0(instr))) {am_s_mem(index++,(int)instr);if (SY_OP1(instr))am_s_mem(index++,arg);} else {excmsg(NOMEMEXC,lin,"");stat = LD_ERROR;}}}return(stat);}E.1.3.2 Default exception handlers: load e.c#include "system.h"#include "load.h"void ld_fil(){ fprintf(sy_excfilp,"Exception ld_fil occurred\n");}E.1.4 sham MIE.1.4.1 Module implementation: sham.c#include "system.h"#include "absmach.h"#include "token.h"#include "exec.h"#include "load.h"#ifdef ISHAM#include "keybdin.h"#include "scngeom.h"#include "scnstr.h"#include "scndr.h"#endif/*****constants*****//*****types*****//*****variables*****/



E.1. BSHAM MODULES 295FILE *sy_excfilp;/*****local functions*****//*****main*****/main(argc,argv)int argc;char *argv[];{ FILE *fp;/*check command line arguments*/if (argc == 1) {printf("Command line error. ");printf("No file name specified\n");return(0);} else {fp = fopen(argv[1],"r");if (fp == NULL) {printf("Command line error. ");printf("Cannot open file: %s\n",argv[1]);return(0);}}/*initialize exception file pointer*/#ifdef BSHAMsy_excfilp = stdout;#elsesy_excfilp = fopen(SY_EXCFIL,"a");#endifam_s_init();tk_s_init();ld_s_init();ex_s_init();if (ld_sg_load(fp) == LD_NORMAL) {#ifdef ISHAM/*initialize curses*/initscr();/*initialize keyboard and screen handling*/ki_s_init();sg_s_init();ss_s_init();



296 Appendix E MODULE IMPLEMENTATIONSsd_s_init();#endif ex_s_exec();#ifdef ISHAM/*terminate keyboard and screen handling*/ss_s_end();ki_s_end();/*terminate curses*/endwin();#endif}#ifdef ISHAM/*close exception file*/fclose(sy_excfilp);#endifreturn(0);}E.1.4.2 Default exception handlersThere are no exceptions for sham.E.1.5 token MIE.1.5.1 Module implementation: token.c#include <ctype.h>#include "system.h"#include "token.h"/*****constants*****//*****types*****//*****module state*****/static char buf[TK_MAXSTRLEN+2]; /*scanned string; space for sentinel*/static int cur; /*current char in buf*//*****local functions*****//*****access routines*****/void tk_s_init()



E.1. BSHAM MODULES 297{ buf[0] = '\0';cur = 0;}void tk_s_str(s)char *s;{ if (strlen(s) > TK_MAXSTRLEN) {tk_maxlen();return;}while (*s == ' ') /*skip over leading blanks*/s++;strcpy(buf,s); /*copy in what remains*/if (*s != '\0')strcat(buf," "); /*add trailing blank as sentinel*/cur = 0;}void tk_sg_next(valtyp)tk_valtyp *valtyp;{ enum {START,INT,ID,ERR,END} state; /*lexical analyzer state*/int tokstart,tokend,toklen;int i;if (buf[cur] == '\0') {tk_end();valtyp->val[0] = '\0';valtyp->typ = TK_BADTOK;return;}tokstart = cur; /*needed later to save value of token*/state = START;while (state != END) {switch (state) {case START:if (isalpha(buf[cur])) {state = ID;cur++;} else if (isdigit(buf[cur])) {state = INT;cur++;} else {state = ERR;cur++;}



298 Appendix E MODULE IMPLEMENTATIONSbreak;case ID:if (buf[cur] == ' ') {state = END;tokend = cur-1;valtyp->typ = TK_ID;} else if (isalnum(buf[cur]))cur++;else {state = ERR;cur++;}break;case INT:if (buf[cur] == ' ') {state = END;tokend = cur-1;valtyp->typ = TK_INT;} else if (isdigit(buf[cur]))cur++;else {state = ERR;cur++;}break;case ERR:if (buf[cur] == ' ') {state = END;tokend = cur-1;valtyp->typ = TK_BADTOK;} else++cur;break;}}/*check maximum lengths*/switch (valtyp->typ) {case TK_ID:if (tokend-tokstart+1 > TK_MAXIDLEN)valtyp->typ = TK_BADTOK;break;case TK_INT:if (tokend-tokstart+1 > TK_MAXINTLEN)valtyp->typ = TK_BADTOK;break;}/*copy token to valtyp*/toklen = tokend-tokstart+1;



E.2. ISHAM MODULES 299for (i = 0; i < toklen; i++)valtyp->val[i] = buf[tokstart+i];valtyp->val[toklen] = '\0';/*skip over blanks preceding next token*/while (buf[cur] == ' ')cur++;}/*boolean*/ int tk_g_end(){ return(buf[cur] == '\0');}void tk_g_dump(){ printf("cur=%d!\n",cur);printf("buf=!%s!\n",buf);}E.1.5.2 Default exception handlers: token e.c#include "system.h"#include "token.h"void tk_maxlen(){ fprintf(sy_excfilp,"Exception tk_maxlen occurred\n");}void tk_end(){ fprintf(sy_excfilp,"Exception tk_end occurred\n");}E.2 ISHAM ModulesE.2.1 keybdin MIE.2.1.1 Module implementation: keybdin.c#include <curses.h>#include "system.h"#include "keybdin.h"/*****constants*****//*****types*****/



300 Appendix E MODULE IMPLEMENTATIONS/*****module state*****//*****local functions*****//*****access routines*****/void ki_s_init(){ cbreak();noecho();}char ki_sg_next(){ return(getch());}void ki_s_end(){ echo();nocbreak();}E.2.1.2 Default exception handlersThere are no exceptions for keybdin.E.2.2 scndr MIE.2.2.1 Module implementation: scndr.c#include "system.h"#include "absmach.h"#include "scngeom.h"#include "scnstr.h"#include "scndr.h"/*****constants*****//*****types*****//*****module state*****//*****local functions*****/#define FLD(f,t,r,c) (f.nam = t, f.row = r, f.col = c)/*print constant field with fieldname t, row r, and column c*/



E.2. ISHAM MODULES 301static void prtcon(t,r,c)sg_fldnam t;int r,c;{ sg_fld f;FLD(f,t,r,c);ss_s_str(sg_g_row(f),sg_g_col(f),sg_g_val(f));}/*pad s on the left with blanks to length l* truncate s to l if longer than l*/static void rjust(s,l)char *s;int l;{ int shift;s[l] = '\0';shift = l-strlen(s);while (--l >= shift)s[l] = s[l-shift];while (l >= 0)s[l--] = ' ';}/*pad s on the right with blanks to length l* truncate s to l if longer than l*/static void ljust(s,l)char *s;int l;{ int i;for (i = strlen(s); i < l; i++)s[i] = ' ';s[l] = '\0';}/*****access routines*****/void sd_s_init(){ /*do nothing*/}



302 Appendix E MODULE IMPLEMENTATIONSvoid sd_s_clrscn(){ ss_s_clrscn();ss_s_ref();}void sd_s_con(){ int i;prtcon(SG_SCNTTL,0,0);prtcon(SG_MEMTTL1,0,0);prtcon(SG_MEMTTL2,0,0);for (i = 0; i < 10; i++) {prtcon(SG_MEMCOLHDR,0,i);prtcon(SG_MEMROWHDR,i,0);}prtcon(SG_PCTTL,0,0);prtcon(SG_ACCTTL,0,0);prtcon(SG_PRTTTL,0,0);prtcon(SG_PROMPTTTL,0,0);prtcon(SG_MSGTTL,0,0);ss_s_ref();}void sd_s_mem(){ sg_fld f;int r,c;char s[SG_NUMCOL+1];for (r = 0; r < 10; r++) {for (c = 0; c < 10; c++) {FLD(f,SG_MEM,r,c);sprintf(s,"%d",am_g_mem(10*r+c));rjust(s,sg_g_len(f));ss_s_str(sg_g_row(f),sg_g_col(f),s);}}ss_s_ref();}void sd_s_pc(){ sg_fld f;char s[SG_NUMCOL+1];FLD(f,SG_PC,0,0);



E.2. ISHAM MODULES 303sprintf(s,"%d",am_g_pc());rjust(s,sg_g_len(f));ss_s_str(sg_g_row(f),sg_g_col(f),s);ss_s_ref();}void sd_s_acc(){ sg_fld f;char s[SG_NUMCOL+1];FLD(f,SG_ACC,0,0);sprintf(s,"%d",am_g_acc());rjust(s,sg_g_len(f));ss_s_str(sg_g_row(f),sg_g_col(f),s);ss_s_ref();}void sd_s_prt(val)int val;{ sg_fld f;char s[SG_NUMCOL+1];FLD(f,SG_PRT,0,0);sprintf(s,"%d",val);rjust(s,sg_g_len(f));ss_s_str(sg_g_row(f),sg_g_col(f),s);ss_s_ref();}void sd_s_msg(msg)char *msg;{ sg_fld f;char s[SG_NUMCOL+1];FLD(f,SG_MSG,0,0);strcpy(s,msg);ljust(s,sg_g_len(f));ss_s_str(sg_g_row(f),sg_g_col(f),s);ss_s_ref();}void sd_s_hlt(a,f)int a,f;{ sg_fld fld;



304 Appendix E MODULE IMPLEMENTATIONSFLD(fld,SG_MEM,a/10,a%10);ss_s_hlt(sg_g_row(fld),sg_g_col(fld),sg_g_len(fld),f);ss_s_ref();}E.2.2.2 Default exception handlersThere are no exceptions for scndr.E.2.3 scngeom MIE.2.3.1 Module implementation: scngeom.c#include "system.h"#include "scngeom.h"/*****constants*****//*NOTE: because the variable below is initialized and never changed*it is listed as a constant.*/static struct {int row,col,len;char *val;} fldtbl[] = {/*SG_MEM*/ {5,15,3,""},/*SG_PC*/ {17,45,2,""},/*SG_ACC*/ {18,44,3,""},/*SG_PRT*/ {19,44,3,""},/*SG_MSG*/ {23,9,63,""},/*SG_SCNTTL*/ {0,33,4,"SHAM"},/*SG_MEMTTL1*/ {5,0,4,"Main"},/*SG_MEMTTL2*/ {6,0,7,"memory:"},/*SG_MEMCOLHDR*/ {3,15,3,""}, /*depends on row*//*SG_MEMROWHDR*/ {5,9,3,""}, /*depends on column*//*SG_PCTTL*/ {17,24,19," Program counter:"},/*SG_ACCTTL*/ {18,24,19," Accumulator:"},/*SG_PRTTTL*/ {19,24,19,"Last value printed:"},/*SG_PROMPTTTL*/ {22,0,46,"Enter command: \"s\" to single step; \"e\" to exit"},/*SG_MSGTTL*/ {23,0,8,"Message:"}};/*****types*****/



E.2. ISHAM MODULES 305/*****module state*****//*****local functions*****//*out := (fld is a legal field identifier)*/static int legfld(fld)sg_fld fld;{ int maxrow,maxcol;if (fld.nam == SG_MEM || fld.nam == SG_MEMROWHDR)maxrow = 9;else maxrow = 0;if (fld.nam == SG_MEM || fld.nam == SG_MEMCOLHDR)maxcol = 9;else maxcol = 0;return((int)fld.nam >= 0 && (int)fld.nam <= (int)SG_MSGTTL &&fld.row >= 0 && fld.row <= maxrow &&fld.col >= 0 && fld.col <= maxcol);}/*****access routines*****/void sg_s_init(){ /*do nothing*/}int sg_g_legfld(fld)sg_fld fld;{ return(legfld(fld));}int sg_g_row(fld)sg_fld fld;{ if (!legfld(fld)) {sg_badfld();return(0);}return(fldtbl[(int)fld.nam].row+fld.row);}



306 Appendix E MODULE IMPLEMENTATIONSint sg_g_col(fld)sg_fld fld;{ if (!legfld(fld)) {sg_badfld();return(0);}return(fldtbl[(int)fld.nam].col+fld.col*6);}int sg_g_len(fld)sg_fld fld;{ if (!legfld(fld)) {sg_badfld();return(0);}return(fldtbl[(int)fld.nam].len);}char *sg_g_val(fld)sg_fld fld;{ char str[4];if (!legfld(fld)) {sg_badfld();return(NULL);}if (fld.nam == SG_MEMCOLHDR) {sprintf(str,"%3d",fld.col);return(str);} else if (fld.nam == SG_MEMROWHDR) {sprintf(str,"%3d",10*fld.row);return(str);}return(fldtbl[(int)fld.nam].val);}E.2.3.2 Default exception handlers: scngeom e.c#include "system.h"#include "scngeom.h"void sg_badfld(){ fprintf(sy_excfilp,"Exception sg_badfld occurred\n");}



E.2. ISHAM MODULES 307E.2.4 scnstr MIE.2.4.1 Module implementation: scnstr.c#include <curses.h>#include "system.h"#include "scnstr.h"/*****constants*****//*****types*****//*****module state*****//*****local functions*****//*instr(r,c,l,s)* load into s the string at positions (r,c) thru (r,c+l-1)*/static void instr(r,c,l,s)int r,c,l;char *s;{ int i;for (i = 0; i < l; i++) {move(r,c+i);s[i] = inch();}s[l] = '\0';}/*****access routines*****/void ss_s_init(){ /*do nothing*/}void ss_s_clrscn(){ clear();}void ss_s_str(r,c,s)int r,c;char *s;{ if (r < 0 || r >= SS_NUMROW) {



308 Appendix E MODULE IMPLEMENTATIONSss_row();return;} else if (c < 0 || c >= SS_NUMCOL) {ss_col();return;} else if (strlen(s) > SS_NUMCOL-c) {ss_len();return;}if (strlen(s) > 0) { /*handle the 0-length case neutrally*/move(r,c);addstr(s);}}void ss_s_hlt(r,c,l,f)int r,c,l,f;{ char s[SS_NUMCOL+1];if (r < 0 || r >= SS_NUMROW) {ss_row();return;} else if (c < 0 || c >= SS_NUMCOL) {ss_col();return;} else if (l < 0 || l > SS_NUMCOL-c) {ss_len();return;}if (l > 0) {instr(r,c,l,s);if (f) {standout();move(r,c);addstr(s);standend();} else {move(r,c);addstr(s);}}}void ss_s_cur(r,c)int r,c;{ if (r < 0 || r >= SS_NUMROW) {



E.3. DEMONSTRATION MODULES 309ss_row();return;} else if (c < 0 || c >= SS_NUMCOL) {ss_col();return;}move(r,c);}void ss_s_ref(){ refresh();}void ss_s_end(){ /*do nothing*/}E.2.4.2 Default exception handlers: scnstr e.c#include "system.h"#include "scnstr.h"void ss_row(){ fprintf(sy_excfilp,"Exception ss_row occurred\n");}void ss_col(){ fprintf(sy_excfilp,"Exception ss_col occurred\n");}void ss_len(){ fprintf(sy_excfilp,"Exception ss_len occurred\n");}E.3 Demonstration ModulesE.3.1 stack MIE.3.1.1 Module implementation: stack.c#include "system.h"#include "stack.h"



310 Appendix E MODULE IMPLEMENTATIONS/*****constants*****//*****types*****//*****module state*****/static int stack[PS_MAXSIZ]; /*stack elements*/static int siz; /*number of elements in stack*//*****local functions*****//*****access routines*****/void ps_s_init(){ siz = 0;}void ps_s_push(x)int x;{ if (siz == PS_MAXSIZ) {ps_full();return;}stack[siz++] = x;}void ps_s_pop(){ if (siz == 0) {ps_empty();return;}--siz;}int ps_g_top(){ if (siz == 0) {ps_empty();return(0);}return(stack[siz-1]);}int ps_g_depth(){



E.3. DEMONSTRATION MODULES 311return(siz);}void ps_g_dump(){ int i;printf("siz=%d\n",siz);for (i = 0; i < siz; i++)printf("stack[%d]=%d\n",i,stack[i]);}E.3.1.2 Default exception handlers: stack e.c#include "system.h"#include "stack.h"void ps_empty(){ fprintf(sy_excfilp,"Exception ps_empty occurred\n");}void ps_full(){ fprintf(sy_excfilp,"Exception ps_full occurred\n");}E.3.2 symtbl MIE.3.2.1 Module implementation: symtbl.c#include "system.h"#include "symtbl.h"/*****constants*****/#define NOTFOUND -1/*****types*****//*****module state*****/static struct {char sym[ST_MAXSYMLEN+1]; /*symbol value*/int loc; /*symbol location*/} tbl[ST_MAXSYMS]; /*one entry per symbol*/static int tblcnt; /*number of symbols in tbl*/



312 Appendix E MODULE IMPLEMENTATIONS/*****local functions*****//*out := (state invariant holds =>* ((exists i in [0,tblcnt-1])(s = tbl[i].sym)) => i* | true => NOTFOUND))*/static int findsym(sym)char *sym;{ int i;for (i = 0; i < tblcnt; i++) {if (!strcmp(sym,tbl[i].sym))return(i);}return(NOTFOUND);}/*****access routines*****/void st_s_init(){ tblcnt = 0;}void st_s_add(sym,loc)char *sym;int loc;{ if (strlen(sym) > ST_MAXSYMLEN) {st_maxlen();return;} else if (findsym(sym) != NOTFOUND) {st_exsym();return;} else if (tblcnt == ST_MAXSYMS) {st_full();return;}strcpy(tbl[tblcnt].sym,sym);tbl[tblcnt].loc = loc;tblcnt++;}int st_g_exsym(sym)char *sym;{



E.3. DEMONSTRATION MODULES 313return(findsym(sym) != NOTFOUND);}void st_s_loc(sym,loc)char *sym;int loc;{ int i;i = findsym(sym);if (i == NOTFOUND) {st_notexsym();return;}tbl[i].loc = loc;}int st_g_loc(sym)char *sym;{ int i;i = findsym(sym);if (i == NOTFOUND) {st_notexsym();return(0);}return(tbl[i].loc);}int st_g_siz(){ return(tblcnt);}void st_g_dump(){ int i;printf ("tblcnt=%d!ST_MAXSYMS=%d!\n",tblcnt,ST_MAXSYMS);for (i = 0; i < tblcnt; i++)printf("tbl[%d].sym=%s!.loc=%d\n",i,tbl[i].sym,tbl[i].loc);}E.3.2.2 Default exception handlers: symtbl e.c#include "system.h"#include "symtbl.h"



314 Appendix E MODULE IMPLEMENTATIONSvoid st_exsym(){ fprintf(sy_excfilp,"Exception st_exsym occurred\n");}void st_maxlen(){ fprintf(sy_excfilp,"Exception st_maxlen occurred\n");}void st_notexsym(){ fprintf(sy_excfilp,"Exception st_notexsym occurred\n");}void st_full(){ fprintf(sy_excfilp,"Exception st_full occurred\n");}



Appendix FTest Plans andImplementationsF.1 BSHAM ModulesF.1.1 absmach TP and TIF.1.1.1 Test planassumptionsAM MEMSIZ > 2AM MAXINT � 2� AM MEMSIZtest environmentPGMGEN driverno stubstest case selection strategyspecial valuesmodule statebased of content of mem, pc, and acc, test for:run-time exceptionsall exceptions for all instructions at least onceAM HALTHALT instruction with pc 2 f0; AM MEMSIZ� 1gAM PRINTPRINT instruction with pc 2 f0; AM MEMSIZ � 1gAM NORMALall instructions with one operand and pc = AM MEMSIZ � 2all instructions with address argument:interval rule on address: [0; AM MEMSIZ]each instruction at least once315



316 Appendix F TEST PLANS AND IMPLEMENTATIONSaccess routine parametersam s acc(i), am s pc(a), am s mem(a; i), and am g mem(a):interval rule for a: [0; AM MEMSIZ]interval rule for i: [0; AM MAXINT]test casesexceptionsam s mem and am g memgenerate am addram s acc, am s pc, and am s memgenerate am intnormal caseam s acc and am g accam g acc after am s init and after am s accam s pc and am g pcam g pc after am s init and after am s pcam s mem and am g memam g mem after am s init and after am s memam sg execall special module statesin each case, check pc and acc afterwardsfor commands that alter mem, check mem afterwardstest implementation strategystatement coverage measured using the UNIX utility tcovF.1.1.2 Test implementationPGMGEN script: absmach.scriptmoduleam_accprogs<s_init,s_acc,g_acc,s_pc,g_pc,s_mem,g_mem,sg_exec>exceptions<addr,int>globcod{%#include "system.h"#include "absmach.h"int cmd;%}cases/*****exceptions*****/



F.1. BSHAM MODULES 317/*addr*/<s_init().s_pc(-1000), addr, dc, dc, dc><s_init().s_pc(-1), addr, dc, dc, dc><s_init().s_pc(AM_MEMSIZ), addr, dc, dc, dc><s_init().s_pc(2*AM_MEMSIZ), addr, dc, dc, dc><s_init().s_mem(-1000,0), addr, dc, dc, dc><s_init().s_mem(-1,0), addr, dc, dc, dc><s_init().s_mem(AM_MEMSIZ,0), addr, dc, dc, dc><s_init().s_mem(2*AM_MEMSIZ,0), addr, dc, dc, dc><s_init().g_mem(-1000), addr, dc, dc, dc><s_init().g_mem(-1), addr, dc, dc, dc><s_init().g_mem(AM_MEMSIZ), addr, dc, dc, dc><s_init().g_mem(2*AM_MEMSIZ), addr, dc, dc, dc>/*int*/<s_init().s_acc(-1000), int, dc, dc, dc><s_init().s_acc(-1), int, dc, dc, dc><s_init().s_acc(AM_MAXINT+1), int, dc, dc, dc><s_init().s_acc(2*AM_MAXINT), int, dc, dc, dc><s_init().s_mem(0,-1000), int, dc, dc, dc><s_init().s_mem(0,-1), int, dc, dc, dc><s_init().s_mem(0,AM_MAXINT+1), int, dc, dc, dc><s_init().s_mem(0,2*AM_MAXINT), int, dc, dc, dc>/*****normal case*****//*s_acc and g_acc*/<s_init(), noexc, g_acc(), 0, int><s_init().s_acc(0), noexc, g_acc(), 0, int><s_init().s_acc(AM_MAXINT/2), noexc, g_acc(), AM_MAXINT/2, int><s_init().s_acc(AM_MAXINT), noexc, g_acc(), AM_MAXINT, int>/*s_pc and g_pc*/<s_init(), noexc, g_pc(), 0, int><s_init().s_pc(0), noexc, g_pc(), 0, int><s_init().s_pc(AM_MEMSIZ/2), noexc, g_pc(), AM_MEMSIZ/2, int><s_init().s_pc(AM_MEMSIZ-1), noexc, g_pc(), AM_MEMSIZ-1, int>/*s_mem and g_mem*/<s_init(), noexc, g_mem(0), 0, int><s_init(), noexc, g_mem(AM_MEMSIZ/2), 0, int><s_init(), noexc, g_mem(AM_MEMSIZ-1), 0, int><s_init().s_mem(0,0), noexc, g_mem(0), 0, int><s_init().s_mem(0,AM_MAXINT/2), noexc, g_mem(0), AM_MAXINT/2, int><s_init().s_mem(0,AM_MAXINT), noexc, g_mem(0), AM_MAXINT, int><s_init().s_mem(AM_MEMSIZ/2,3), noexc, g_mem(AM_MEMSIZ/2), 3, int><s_init().s_mem(AM_MEMSIZ-1,3), noexc, g_mem(AM_MEMSIZ-1), 3, int>/*sg_exec: run-time exceptions*/



318 Appendix F TEST PLANS AND IMPLEMENTATIONS<s_init.s_mem(0,10), noexc, sg_exec(), AM_OBJECTEXC, int><s_init.s_mem(0,AM_MAXINT), noexc, sg_exec(), AM_OBJECTEXC, int>{% for (cmd = 0; cmd <= 7; cmd++) %}<s_init.s_pc(AM_MEMSIZ-1).s_mem(AM_MEMSIZ-1,cmd),noexc, sg_exec(), AM_NOOPEXC, int>{% for (cmd = 0; cmd <= 6; cmd++) { %}<s_init.s_mem(0,cmd).s_mem(1,AM_MEMSIZ),noexc, sg_exec(), AM_ADDREXC, int><s_init.s_mem(0,cmd).s_mem(1,2*AM_MEMSIZ),noexc, sg_exec(), AM_ADDREXC, int>{% } %}<s_init.s_mem(0,SY_ADD).s_mem(1,2).s_mem(2,1).s_acc(AM_MAXINT),noexc, sg_exec(), AM_ARITHEXC, int><s_init.s_mem(0,SY_ADD).s_mem(1,2).s_mem(2,AM_MAXINT).s_acc(1),noexc, sg_exec(), AM_ARITHEXC, int><s_init.s_mem(0,SY_ADD).s_mem(1,2).s_mem(2,AM_MAXINT).s_acc(AM_MAXINT), noexc, sg_exec(), AM_ARITHEXC, int><s_init.s_mem(0,SY_SUBTRACT).s_mem(1,2).s_mem(2,1).s_acc(0),noexc, sg_exec(), AM_ARITHEXC, int><s_init.s_mem(0,SY_SUBTRACT).s_mem(1,2).s_mem(2,AM_MAXINT).s_acc(AM_MAXINT-1), noexc, sg_exec(), AM_ARITHEXC, int><s_init.s_mem(0,SY_SUBTRACT).s_mem(1,2).s_mem(2,AM_MAXINT).s_acc(0), noexc, sg_exec(), AM_ARITHEXC, int>/*sg_exec: AM_HALT*/<s_init().s_mem(0,SY_HALT), noexc, sg_exec(), AM_HALT, int>< , noexc, g_pc(), 0, int>< , noexc, g_acc(), 0, int><s_init().s_pc(AM_MEMSIZ-1).s_mem(AM_MEMSIZ-1,SY_HALT),noexc, sg_exec(), AM_HALT, int>< , noexc, g_pc(), AM_MEMSIZ-1, int>< , noexc, g_acc(), 0, int>/*sg_exec: AM_PRINT*/<s_init().s_mem(0,SY_PRINT), noexc, sg_exec(), AM_PRINT, int>< , noexc, g_pc(), 1, int>< , noexc, g_acc(), 0, int><s_init().s_pc(AM_MEMSIZ-1).s_mem(AM_MEMSIZ-1,SY_PRINT),noexc, sg_exec(), AM_PRINT, int>< , noexc, g_pc(), 0, int>< , noexc, g_acc(), 0, int>/*sg_exec: AM_NORMAL*//*maximal pc*/



F.1. BSHAM MODULES 319{% for (cmd = 0; cmd <= 7; cmd++) { %}<s_init().s_pc(AM_MEMSIZ-2).s_mem(AM_MEMSIZ-2,cmd),noexc, sg_exec(), AM_NORMAL, int>< ,noexc, g_pc(), 0, int>{% } %}/*full range of addresses*/{% for (cmd = 0; cmd <= 6; cmd++) { %}<s_init().s_pc(1).s_mem(1,cmd).s_mem(2,0),noexc, sg_exec(), AM_NORMAL, int><s_init().s_mem(0,cmd).s_mem(1,AM_MEMSIZ/2),noexc, sg_exec(), AM_NORMAL, int><s_init().s_mem(0,cmd).s_mem(1,AM_MEMSIZ-1),noexc, sg_exec(), AM_NORMAL, int>{% } %}/*load*/<s_init().s_mem(0,SY_LOAD).s_mem(1,2).s_mem(2,7),noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 2, int>< , noexc, g_acc(), 7, int>/*store*/<s_init().s_mem(0,SY_STORE).s_mem(1,2).s_acc(7),noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 2, int>< , noexc, g_acc(), 7, int>< , noexc, g_mem(2), 7, int>/*add*/<s_init().s_mem(0,SY_ADD).s_mem(1,2).s_mem(2,AM_MAXINT-7).s_acc(7),noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 2, int>< , noexc, g_acc(), AM_MAXINT, int>/*subtract*/<s_init().s_mem(0,SY_SUBTRACT).s_mem(1,2).s_mem(2,7).s_acc(7),noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 2, int>< , noexc, g_acc(), 0, int>/*branch*/<s_init().s_mem(0,SY_BRANCH).s_mem(1,7), noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 7, int>< , noexc, g_acc(), 0, int>/*branchzero*/<s_init().s_mem(0,SY_BRANCHZERO).s_mem(1,7),



320 Appendix F TEST PLANS AND IMPLEMENTATIONSnoexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 7, int>< , noexc, g_acc(), 0, int><s_init().s_mem(0,SY_BRANCHZERO).s_mem(1,7).s_acc(1),noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 2, int>< , noexc, g_acc(), 1, int>/*branchpos*/<s_init().s_mem(0,SY_BRANCHPOS).s_mem(1,7),noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 2, int>< , noexc, g_acc(), 0, int><s_init().s_mem(0,SY_BRANCHPOS).s_mem(1,7).s_acc(1),noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 7, int>< , noexc, g_acc(), 1, int>/*loadcon*/<s_init().s_mem(0,SY_LOADCON).s_mem(1,7),noexc, sg_exec(), AM_NORMAL, int>< , noexc, g_pc(), 2, int>< , noexc, g_acc(), 7, int>Interactive driver: absmach i.c#include "system.h"#include "absmach.h"#define QUIT 0#define S_INIT 1#define S_PC 2#define G_PC 3#define S_ACC 4#define G_ACC 5#define S_MEM 6#define G_MEM 7#define SG_EXEC 8#define G_DUMP 9#define BUFLEN 80FILE *sy_excfilp = stderr;int nextcall(){ int reply;char s[81];



F.1. BSHAM MODULES 321do { printf("\nEnter command:\n");printf("\t0:quit\n");printf("\t1:s_init\n");printf("\t2:s_pc\n");printf("\t3:g_pc\n");printf("\t4:s_acc\n");printf("\t5:g_acc\n");printf("\t6:s_mem\n");printf("\t7:g_mem\n");printf("\t8:sg_exec\n");printf("\t9:g_dump:");gets(s);if (sscanf(s,"%d",&reply) != 1)reply = -1; /*user error - stay in loop*/;} while (reply < 0 || reply > G_DUMP);return(reply);}int readint(msg)char *msg;{ int reply,found;char s[BUFLEN];found = 0;while (!found) {printf(msg);gets(s);if (sscanf(s,"%d",&reply) == 1)found = 1;}return (reply);}main(){ int reply,i1,i2;while ((reply=nextcall()) != QUIT) {switch(reply) {case S_INIT:am_s_init();break;case S_PC:i1 = readint("Enter pc:");am_s_pc(i1);



322 Appendix F TEST PLANS AND IMPLEMENTATIONSbreak;case G_PC:i1 = am_g_pc();printf("returns %d\n",i1);break;case S_ACC:i1 = readint("Enter acc:");am_s_acc(i1);break;case G_ACC:i1 = am_g_acc();printf("returns %d\n",i1);break;case S_MEM:i1 = readint("Enter addr:");i2 = readint("Enter val:");am_s_mem(i1,i2);break;case G_MEM:i1 = readint("Enter addr:");i2 = am_g_mem(i1);printf("returns %d\n",i2);break;case SG_EXEC:i1 = (int)am_sg_exec();printf("returns %d\n",i1);break;case G_DUMP:am_g_dump();break;}}return(0);}F.1.2 exec TPF.1.2.1 Test planassumptionstest environmenttest case selection strategytest implementation strategyconsiderationsexec testing performed during SHAM system testing



F.1. BSHAM MODULES 323F.1.3 load TP and TIF.1.3.1 Test planassumptionsAM MAXINT = 999AM MEMSIZ = 100test environmentsham Coordinator used as driverstubs for absmach and exec, production code for sham and tokeninput stored in �lesoutput saved in �les, checked with delta testingdirectory structure:load/input/ - test cases stored one per �leexp/ - expected results of test case (same �le name)act/ - actual results of test case (same �le name)test case selection strategyspecial valuesmodule statenoneaccess routine parametersinput �le for ld sg load:every load-time exception for every instructionevery SHAM instruction at least onceinterval rule for instructions with an operandcompletely �ll up memorytest casesload-time exceptionsldexc1: all load-time exceptions except NOMEMEXCldexc2: NOMEMEXCnormal caseinstr: every SHAM instructionfill: completely �ll up memorytest implementation strategystubs print out name and parameters of access routinestarget runtest in Makefilefor each �le f in input/bsham f >act/fdiff act/f exp/fstatement coverage measured using the UNIX utility tcovF.1.3.2 Test implementationabsmach stubs: absmach s.c#include "system.h"



324 Appendix F TEST PLANS AND IMPLEMENTATIONS#include "absmach.h"/*****module state*****/static int mem[AM_MEMSIZ];/*****access routines*****/void am_s_init(){}void am_s_mem(a,i)int a,i;{ mem[a] = i;}int am_g_mem(a)int a;{ return(mem[a]);}exec stubs: exec s.c#include "system.h"#include "absmach.h"#include "exec.h"/*****access routines*****/void ex_s_init(){}void ex_s_exec(){ int i;for (i = 0; i < AM_MEMSIZ; i++) {printf("%4d",am_g_mem(i));if (i % 10 == 9)printf("\n");}}



F.1. BSHAM MODULES 325Input �le: input/fillstore 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2store 2



326 Appendix F TEST PLANS AND IMPLEMENTATIONSstore 2store 2store 2Expected output: exp/fill1 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2 1 2Input �le: input/instrload 0load 50load 99store 0store 50store 99add 0add 50add 99sub 0sub 50sub 99br 0br 50br 99brz 0brz 50brz 99brp 0brp 50brp 99loadcon 0loadcon 500loadcon 999printhalt



F.1. BSHAM MODULES 327Expected output: exp/instr0 0 0 50 0 99 1 0 1 501 99 2 0 2 50 2 99 3 03 50 3 99 4 0 4 50 4 995 0 5 50 5 99 6 0 6 506 99 7 0 7 500 7 999 8 90 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0Input �le: input/ldexc1xxxloadstoreaddsubbrbrzbrploadconload xload 100load 200store xstore 100store 200add xadd 100add 200sub xsub 100sub 200br xbr 100br 200brz xbrz 100brz 200brp xbrp 100brp 200loadcon xloadcon 1000loadcon 2000



328 Appendix F TEST PLANS AND IMPLEMENTATIONSExpected output: exp/ldexc1Load exception at 1. Blank line illegalLoad exception at 2. Illegal instruction: xxxLoad exception at 3. Operand missingLoad exception at 4. Operand missingLoad exception at 5. Operand missingLoad exception at 6. Operand missingLoad exception at 7. Operand missingLoad exception at 8. Operand missingLoad exception at 9. Operand missingLoad exception at 10. Operand missingLoad exception at 11. Illegal operand: xLoad exception at 12. Illegal operand: 100Load exception at 13. Illegal operand: 200Load exception at 14. Illegal operand: xLoad exception at 15. Illegal operand: 100Load exception at 16. Illegal operand: 200Load exception at 17. Illegal operand: xLoad exception at 18. Illegal operand: 100Load exception at 19. Illegal operand: 200Load exception at 20. Illegal operand: xLoad exception at 21. Illegal operand: 100Load exception at 22. Illegal operand: 200Load exception at 23. Illegal operand: xLoad exception at 24. Illegal operand: 100Load exception at 25. Illegal operand: 200Load exception at 26. Illegal operand: xLoad exception at 27. Illegal operand: 100Load exception at 28. Illegal operand: 200Load exception at 29. Illegal operand: xLoad exception at 30. Illegal operand: 100Load exception at 31. Illegal operand: 200Load exception at 32. Illegal operand: xLoad exception at 33. Illegal operand: 1000Load exception at 34. Illegal operand: 2000Input �le: input/ldexc2load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0



F.1. BSHAM MODULES 329load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0load 0printExpected output: exp/ldexc2Load exception at 51. Program too large



330 Appendix F TEST PLANS AND IMPLEMENTATIONSF.1.4 sham TPF.1.4.1 Test planassumptionstest environmenttest case selection strategytest implementation strategyconsiderationssham module testing performed during SHAM system testingF.1.5 token TP and TIF.1.5.1 Test planassumptionsTK MAXSTRLEN � 9TK MAXIDLEN � 3TK MAXINTLEN � 3test environmentPGMGEN driverno stubstest case selection strategyspecial valuesmodule statenumber of tokens: f0; 1; 3gtypes of token:TK ID - minimum and maximum lengthTK INT - minimum and maximum lengthTK BADTOK -overlength TK ID and TK INT tokenstokens that are \almost" legal TK ID or TK INT tokensaccess routine parameterstk s str(s):interval rule on jsj: [0; TK MAXSTRLEN]number of blanks before/after tokens: f0; 1; 3gtest casesexceptionstk s strgenerate tk maxlentk sg nextgenerate tk end for special number of tokensnormal



F.1. BSHAM MODULES 331tk s str(s)special values jsjspecial values number of blankscheck using tk sg nextspecial number of tokenscheck using tk g endspecial token typescheck token value and type using tk sg nexttest implementation strategymkvaltyp(v; t): returns hv; ti as a structure of type tk valtypcmp valtyp(a; e) and prt valtyp(a; e): cmp and prt functions for tk valtypmkstring(n): returns a string of n *'smust be able to return a string much longer than TK MAXSTRLENmkid(n): returns a string with one alphabetic by n� 1 alphanumericsmkint(n): returns a string of n digitsstatement coverage measured using the UNIX utility tcovF.1.5.2 Test implementationPGMGEN script: token.scriptmoduletk_accprogs<s_init,s_str,g_end,sg_next>exceptions<end,maxlen>globcod{%#include "system.h"#include "token.h"/***tk_valtyp functions: creation; pgmgen cmp_, prt_*/static tk_valtyp valtyp1,valtyp2;static tk_valtyp *vtp = &valtyp1;tk_valtyp *mkvaltyp(val,typ)char *val;tk_toktyp typ;{ strcpy(valtyp2.val,val);valtyp2.typ = typ;return(&valtyp2);}



332 Appendix F TEST PLANS AND IMPLEMENTATIONSint cmp_valtyp(actvtp,expvtp)tk_valtyp *actvtp,*expvtp;{ if (!strcmp(actvtp->val,expvtp->val))return(actvtp->typ == expvtp->typ);else return(0);}void prt_valtyp(actvtp,expvtp)tk_valtyp *actvtp,*expvtp;{ printf("Expected value:<%s,%d>. Actual value:<%s,%d>\n",expvtp->val,expvtp->typ,actvtp->val,actvtp->typ);}static char s[TK_MAXSTRLEN+2];char *mkstr(n)int n;{ int i;for (i = 0; i < n; i++)s[i] = '*';s[n] = '\0';return(s);}char *mkid(n)int n;{ int i;for (i = 0; i < n; i++)s[i] = 'a';s[n] = '\0';return(s);}char *mkint(n)int n;{ int i;for (i = 0; i < n; i++)s[i] = '9';s[n] = '\0';return(s);



F.1. BSHAM MODULES 333}%}cases/*****exceptions*****//*maxlen*/<s_init().s_str(mkstr(TK_MAXSTRLEN+1)), maxlen, dc, dc, dc><s_init().s_str(mkstr(2*TK_MAXSTRLEN)), maxlen, dc, dc, dc>/*end*/<s_init().sg_next(vtp), end, dc, dc, dc><s_init().s_str("").sg_next(vtp), end, dc, dc, dc><s_init().s_str("abc").sg_next(vtp).sg_next(vtp), end, dc, dc, dc><s_init().s_str("a b c").sg_next(vtp).sg_next(vtp).sg_next(vtp).sg_next(vtp), end, dc, dc, dc>/*****normal case*****//*s_str - length of string*/<s_init().s_str(""), noexc, dc, dc, dc><s_init().s_str(mkstr(TK_MAXSTRLEN)), noexc, dc, dc, dc>/*s_str - blanks before and after token*/<s_init().s_str("abc").sg_next(vtp),noexc, vtp, mkvaltyp("abc",TK_ID), valtyp><s_init().s_str(" abc ").sg_next(vtp),noexc, vtp, mkvaltyp("abc",TK_ID), valtyp><s_init().s_str(" abc").sg_next(vtp),noexc, vtp, mkvaltyp("abc",TK_ID), valtyp><s_init().s_str("abc ").sg_next(vtp),noexc, vtp, mkvaltyp("abc",TK_ID), valtyp><s_init().s_str(" abc ").sg_next(vtp),noexc, vtp, mkvaltyp("abc",TK_ID), valtyp><s_init().s_str("abc def").sg_next(vtp),noexc, vtp, mkvaltyp("abc",TK_ID), valtyp><s_init().s_str("abc def").sg_next(vtp).sg_next(vtp),noexc, vtp, mkvaltyp("def",TK_ID), valtyp><s_init().s_str("abc def").sg_next(vtp),noexc, vtp, mkvaltyp("abc",TK_ID), valtyp><s_init().s_str("abc def").sg_next(vtp).sg_next(vtp),noexc, vtp, mkvaltyp("def",TK_ID), valtyp>/*special number of tokens*/<s_init(), noexc, g_end(), 1, bool><s_init().s_str(""), noexc, g_end(), 1, bool><s_init().s_str("abc"), noexc, g_end(), 0, bool><s_init().s_str("abc").sg_next(vtp), noexc, g_end(), 1, bool><s_init().s_str("a b c").sg_next(vtp).sg_next(vtp),



334 Appendix F TEST PLANS AND IMPLEMENTATIONSnoexc, g_end(), 0, bool><s_init().s_str("a b c").sg_next(vtp).sg_next(vtp).sg_next(vtp),noexc, g_end(), 1, bool>/*special token types: TK_ID*/<s_init().s_str("a").sg_next(vtp),noexc, vtp, mkvaltyp("a",TK_ID), valtyp><s_init().s_str(mkid(TK_MAXIDLEN)).sg_next(vtp),noexc, vtp, mkvaltyp(mkid(TK_MAXIDLEN),TK_ID), valtyp>/*special token types: TK_INT*/<s_init().s_str("1").sg_next(vtp),noexc, vtp, mkvaltyp("1",TK_INT), valtyp><s_init().s_str(mkint(TK_MAXINTLEN)).sg_next(vtp),noexc, vtp, mkvaltyp(mkint(TK_MAXINTLEN),TK_INT), valtyp>/*special token types: TK_BADTOK - overlength*//*TK_ID*/<s_init().s_str(mkid(TK_MAXIDLEN+1)).sg_next(vtp),noexc, vtp, mkvaltyp(mkid(TK_MAXIDLEN+1),TK_BADTOK), valtyp>/*TK_INT*/<s_init().s_str(mkint(TK_MAXINTLEN+1)).sg_next(vtp),noexc, vtp, mkvaltyp(mkint(TK_MAXINTLEN+1),TK_BADTOK), valtyp>/*special token types: TK_BADTOK - almost legal id or int*//*bad characters*/<s_init().s_str("!").sg_next(vtp),noexc, vtp, mkvaltyp("!",TK_BADTOK), valtyp>/*TK_ID*/<s_init().s_str("!bc").sg_next(vtp),noexc, vtp, mkvaltyp("!bc",TK_BADTOK), valtyp><s_init().s_str("a!c").sg_next(vtp),noexc, vtp, mkvaltyp("a!c",TK_BADTOK), valtyp><s_init().s_str("ab!").sg_next(vtp),noexc, vtp, mkvaltyp("ab!",TK_BADTOK), valtyp>/*TK_INT*/<s_init().s_str("!23").sg_next(vtp),noexc, vtp, mkvaltyp("!23",TK_BADTOK), valtyp><s_init().s_str("1!3").sg_next(vtp),noexc, vtp, mkvaltyp("1!3",TK_BADTOK), valtyp><s_init().s_str("12!").sg_next(vtp),noexc, vtp, mkvaltyp("12!",TK_BADTOK), valtyp>Interactive driver: token i.c#include "system.h"#include "token.h"#include <stdio.h>



F.1. BSHAM MODULES 335#define QUIT 0#define S_INIT 1#define S_STR 2#define G_END 3#define SG_NEXT 4#define G_DUMP 5FILE *sy_excfilp = stderr;int nextcall(){ int reply;char s[81];do { printf("\nEnter call name:\n");printf("\t0:quit\n");printf("\t1:s_init\n");printf("\t2:s_str\n");printf("\t3:g_end\n");printf("\t4:sg_next\n");printf("\t5:g_dump: ");gets(s);if (sscanf(s,"%d",&reply) != 1)reply = -1; /* user error - stay in loop */} while (reply < 0 || reply > G_DUMP);return(reply);}main(){ int reply;char s[80];tk_valtyp valtyp;while ((reply=nextcall()) != QUIT) {switch(reply) {case S_INIT:tk_s_init();break;case S_STR:printf("Enter string:");gets(s);tk_s_str(s);break;



336 Appendix F TEST PLANS AND IMPLEMENTATIONScase SG_NEXT:tk_sg_next(&valtyp);printf("val=%s!typ=%d\n",valtyp.val,valtyp.typ);break;case G_END:reply = tk_g_end();printf("returns!%d!\n",reply);break;case G_DUMP:tk_g_dump();}}return(0);}F.2 ISHAM ModulesF.2.1 keybdin TP and TIF.2.1.1 Test planassumptionstest environmentkeybdin i customized interactive driverno stubstest case selection strategyspecial valuesmodule statenoneaccess routine parametersreturn value for ki sg next:all valid ISHAM commandsat least one invalid ISHAM commandtest casesenter special values one at a timetest implementation strategykeybdin i:repetitively wait for input commandif command is 'q' then quitelse print commandstatement coverage measured using the UNIX utility tcovF.2.1.2 Test implementationCustomized interactive driver: keybdin i.c



F.2. ISHAM MODULES 337#include <curses.h>#include "system.h"#include "keybdin.h"main(){ char ch;/*initialize curses*/initscr();clear();refresh();ki_s_init();move(0,0);addstr("Enter character ('q' to quit).");move(1,0);addstr("Character entered: ");refresh();ch = ki_sg_next();while (ch != 'q') {move(1,strlen("Character entered: "));addch(ch);refresh();ch = ki_sg_next();}ki_s_end();/*terminate curses*/clear();refresh();endwin();return(0);}F.2.2 scndr TP and TIF.2.2.1 Test planassumptionsSY MAXINT � 990test environmentscndr pic customized driverstubs for absmach, production code for scngeom and scnstrtest case selection strategyspecial values



338 Appendix F TEST PLANS AND IMPLEMENTATIONSmodule stateISHAM screen, with the following valuesMEM(r; c) = 10 � (10 � r + c)MEM(0; 0) and MEM(9; 9) highlightedPC = 11ACC = 222PRT = 333MSG = "123456789012345678901234567890"access routine parametersnonetest casesexceptionsno exception testing donenormal caseISHAM screentest implementation strategystubs for absmachonly get calls implementedreturn values indicated above for ISHAM screenscndr pic: display ISHAM screenwait until return is hitclear screen and exitduring execution, no exceptions should be recorded in the �le SHAM.excfilstatement coverage measured using the UNIX utility tcovconsiderationsThe normal-case testing of scngeom is included in the testing of scndr.F.2.2.2 Test implementationCustomized driver: scndr pic.c#include <curses.h>#include "system.h"#include "scngeom.h"#include "scnstr.h"#include "scndr.h"FILE *sy_excfilp;main(){ char buf[80];/*initialize exception file pointer*/sy_excfilp = fopen(SY_EXCFIL,"a");/*initialize curses*/



F.2. ISHAM MODULES 339initscr();/*initialize modules*/ss_s_init();sg_s_init();sd_s_init();/*create screen*/sd_s_clrscn();sd_s_con();sd_s_mem();sd_s_pc();sd_s_acc();sd_s_prt(333);sd_s_msg("123456789012345678901234567890");sd_s_hlt(0,1);sd_s_hlt(50,1);sd_s_hlt(50,0);sd_s_hlt(99,1);/*leave picture up until return*/gets(buf);sd_s_clrscn();ss_s_end();/*terminate curses*/endwin();/*close exception file*/fclose(sy_excfilp);return(0);}absmach stubs: absmach s.c#include "system.h"#include "absmach.h"/*access routines*/int am_g_acc(){ return(222);}



340 Appendix F TEST PLANS AND IMPLEMENTATIONSint am_g_pc(){ return(11);}int am_g_mem(a)int a;{ return(10*a);}F.2.3 scngeom TP and TIF.2.3.1 Test planassumptionstest environmentPGMGEN driverno stubstest case selection strategyspecial valuesmodule statenoneaccess routine parameterssg g rowall �eld namesinterval rule for row and column numberssg g col, sg g len, and sg g valone illegal �eldtest casesexceptionssg g row, sg g col, sg g len, and sg g valgenerate sg badfldnormalnonetest implementation strategystatement coverage measured using the UNIX utility tcov100% statement coverage for exception-codeconsiderationsOnly exception testing is included.Normal-case testing is performed while testing scndr.



F.2. ISHAM MODULES 341F.2.3.2 Test implementationPGMGEN script: scngeom.scriptmodulesg_accprogs<s_init,g_legfld,g_row,g_col,g_len,g_val>exceptions<badfld>globcod{%#include "system.h"#include "scngeom.h"sg_fld fld;int nam;#define FLD(f,t,r,c) (f.nam = t, f.row = r, f.col = c)%}cases/*****exceptions for g_row, g_col, g_len, and g_val only*****//*****normal case handled elsewhere*****//*g_row*/{%for (nam = 0; nam <= SG_MSGTTL; nam++) {%} <s_init().FLD(fld,nam,-1,0).g_row(fld), badfld, dc, dc, dc><s_init().FLD(fld,nam,-100,0).g_row(fld), badfld, dc, dc, dc><s_init().FLD(fld,nam,0,-1).g_row(fld), badfld, dc, dc, dc><s_init().FLD(fld,nam,0,-100).g_row(fld), badfld, dc, dc, dc>{% if (nam == SG_MEM || nam == SG_MEMROWHDR) {%} <s_init().FLD(fld,nam,10,0).g_row(fld), badfld, dc, dc, dc>{% } else {%} <s_init().FLD(fld,nam,1,0).g_row(fld), badfld, dc, dc, dc>{% }%} <s_init().FLD(fld,nam,100,0).g_row(fld), badfld, dc, dc, dc>{%



342 Appendix F TEST PLANS AND IMPLEMENTATIONSif (nam == SG_MEM || nam == SG_MEMCOLHDR) {%} <s_init().FLD(fld,nam,0,10).g_row(fld), badfld, dc, dc, dc>{% } else {%} <s_init().FLD(fld,nam,0,1).g_row(fld), badfld, dc, dc, dc>{% }%} <s_init().FLD(fld,nam,0,100).g_row(fld), badfld, dc, dc, dc>{%}%}/*g_col, g_len, and g_val*/<s_init().FLD(fld,SG_MEM,-1,0).g_col(fld), badfld, dc, dc, dc><s_init().FLD(fld,SG_MEM,-1,0).g_len(fld), badfld, dc, dc, dc><s_init().FLD(fld,SG_MEM,-1,0).g_val(fld), badfld, dc, dc, dc>/*****g_legfld normal case*****/{%for (nam = 0; nam <= SG_MSGTTL; nam++) {%} <s_init().FLD(fld,nam,-1,0), noexc, g_legfld(fld), 0, bool><s_init().FLD(fld,nam,0,-1), noexc, g_legfld(fld), 0, bool><s_init().FLD(fld,nam,0,0), noexc, g_legfld(fld), 1, bool>{%}%}<s_init().FLD(fld,SG_MEM,10,0), noexc, g_legfld(fld), 0, bool><s_init().FLD(fld,SG_MEM,0,10), noexc, g_legfld(fld), 0, bool><s_init().FLD(fld,SG_MEM,9,9), noexc, g_legfld(fld), 1, bool><s_init().FLD(fld,SG_MEMROWHDR,10,0), noexc, g_legfld(fld), 0, bool><s_init().FLD(fld,SG_MEMROWHDR,9,0), noexc, g_legfld(fld), 1, bool><s_init().FLD(fld,SG_MEMCOLHDR,0,10), noexc, g_legfld(fld), 0, bool><s_init().FLD(fld,SG_MEMCOLHDR,0,9), noexc, g_legfld(fld), 1, bool>Interactive driver: scngeom i.c#include "system.h"#include "scngeom.h"#define QUIT 0#define S_INIT 1#define G_LEGFLD 2#define G_ROW 3#define G_COL 4



F.2. ISHAM MODULES 343#define G_LEN 5#define G_VAL 6#define BUFLEN 80FILE *sy_excfilp = stderr;int nextcall(){ int reply;char s[81];do { printf("\nEnter command:\n");printf("\t0:quit\n");printf("\t1:s_init\n");printf("\t2:g_legfld\n");printf("\t3:g_row\n");printf("\t4:g_col\n");printf("\t5:g_len\n");printf("\t6:g_val:");gets(s);if (sscanf(s,"%d",&reply) != 1)reply = -1; /*user error - stay in loop*/;} while (reply < 0 || reply > G_VAL);return(reply);}int readint(msg)char *msg;{ int reply,found;char s[BUFLEN];found = 0;while (!found) {printf(msg);gets(s);if (sscanf(s,"%d",&reply) == 1)found = 1;}return (reply);}sg_fld readfld(){ sg_fld fld;



344 Appendix F TEST PLANS AND IMPLEMENTATIONSfld.nam = (sg_fldnam)readint("Enter field name:");fld.row = readint("Enter row:");fld.col = readint("Enter column:");return(fld);}main(){ int reply;while ((reply=nextcall()) != QUIT) {switch(reply) {case S_INIT:sg_s_init();break;case G_LEGFLD:printf("returns %d\n",sg_g_legfld(readfld()));break;case G_ROW:printf("returns %d\n",sg_g_row(readfld()));break;case G_COL:printf("returns %d\n",sg_g_col(readfld()));break;case G_LEN:printf("returns %d\n",sg_g_len(readfld()));break;case G_VAL:printf("returns !%s!\n",sg_g_val(readfld()));break;}}return(0);}F.2.4 scnstr TP and TIF.2.4.1 Test planassumptionsSS NUMCOL � 9SS NUMROW > 0test environmentexception testing with PGMGEN drivernormal case testing performed with scnstr pic customized driverno stubs



F.2. ISHAM MODULES 345test case selection strategyspecial valuesmodule statenoneaccess routine parametersss s str(r; c; s), ss s hlt(r; c; l; f), and ss s cur(r; c)interval rule for r and css s str(r; c; s)interval rule for jsjss s hlt(r; c; l; f)interval rule for lturn highlighting on and o� againtest casesexceptionsss s str, ss s hlt, and ss s curgenerate ss row, ss col, and ss lennormal casepattern consisting ofletters A, B, C, and D in four cornersletter V going down vertically in the middleletter H going across horizontally in the middlestring YYYXXXYYY in center with the Y's highlightedcursor in center of the screentest implementation strategyscnstr pic:display pattern on the screenwait until return is hitclear screen and exitduring execution, no exceptions should be recorded in the �le SHAM.excfilstatement coverage measured using the UNIX utility tcovF.2.4.2 Test implementationPGMGEN script: scnstr.scriptmoduless_accprogs<s_init,s_clrscn,s_str,s_hlt,s_cur,s_ref,s_end>exceptions<row,col,len>globcod{%#include "system.h"#include "scnstr.h"



346 Appendix F TEST PLANS AND IMPLEMENTATIONS/*return an oversize string*/char s[2*SS_NUMCOL+1];char *str(l)int l;{ int i;for (i = 0; i < l; i++)s[i] = '*';s[l] = '\0';return(s);}%}cases/*****exceptions only - normal case handled elsewhere*****//*s_str*/<s_init().s_str(-100,0,""), row, dc, dc, dc><s_init().s_str(-1,0,""), row, dc, dc, dc><s_init().s_str(SS_NUMROW,0,""), row, dc, dc, dc><s_init().s_str(2*SS_NUMROW,0,""), row, dc, dc, dc><s_init().s_str(0,-100,""), col, dc, dc, dc><s_init().s_str(0,-1,""), col, dc, dc, dc><s_init().s_str(0,SS_NUMCOL,""), col, dc, dc, dc><s_init().s_str(0,2*SS_NUMCOL,""), col, dc, dc, dc><s_init().s_str(0,0,str(SS_NUMCOL+1)), len, dc, dc, dc><s_init().s_str(0,SS_NUMCOL-1,str(2)), len, dc, dc, dc><s_init().s_str(0,0,str(2*SS_NUMCOL)), len, dc, dc, dc>/*s_hlt*/<s_init().s_hlt(-100,0,0,0), row, dc, dc, dc><s_init().s_hlt(-1,0,0,0), row, dc, dc, dc><s_init().s_hlt(SS_NUMROW,0,0,0), row, dc, dc, dc><s_init().s_hlt(2*SS_NUMROW,0,0,0), row, dc, dc, dc><s_init().s_hlt(0,-100,0,0), col, dc, dc, dc><s_init().s_hlt(0,-1,0,0), col, dc, dc, dc><s_init().s_hlt(0,SS_NUMCOL,0,0), col, dc, dc, dc><s_init().s_hlt(0,2*SS_NUMCOL,0,0), col, dc, dc, dc><s_init().s_hlt(0,0,-100,0), len, dc, dc, dc><s_init().s_hlt(0,0,-1,0), len, dc, dc, dc><s_init().s_hlt(0,0,SS_NUMCOL+1,0), len, dc, dc, dc><s_init().s_hlt(0,SS_NUMCOL-1,2,0), len, dc, dc, dc>



F.2. ISHAM MODULES 347<s_init().s_hlt(0,0,2*SS_NUMCOL,0), len, dc, dc, dc>/*s_cur*/<s_init().s_cur(-100,0), row, dc, dc, dc><s_init().s_cur(-1,0), row, dc, dc, dc><s_init().s_cur(SS_NUMROW,0), row, dc, dc, dc><s_init().s_cur(2*SS_NUMROW,0), row, dc, dc, dc><s_init().s_cur(0,-100), col, dc, dc, dc><s_init().s_cur(0,-1), col, dc, dc, dc><s_init().s_cur(0,SS_NUMCOL), col, dc, dc, dc><s_init().s_cur(0,2*SS_NUMCOL), col, dc, dc, dc>Customized driver: scnstr pic.c#include <curses.h>#include "system.h"#include "scnstr.h"FILE *sy_excfilp;main(){ int i;char buf[SS_NUMCOL+1];/*initialize exception file pointer*/sy_excfilp = fopen(SY_EXCFIL,"a");/*initialize curses*/initscr();ss_s_init();ss_s_clrscn();ss_s_str(0,0,"A");ss_s_str(0,SS_NUMCOL-1,"B");ss_s_str(SS_NUMROW-1,SS_NUMCOL-1,"C");ss_s_str(SS_NUMROW-1,0,"D");for (i = 0; i < SS_NUMROW; i++)ss_s_str(i,SS_NUMCOL/2,"V");for (i = 0; i < SS_NUMCOL; i++)buf[i] = 'H';buf[SS_NUMCOL] = '\0';ss_s_str(SS_NUMROW/2,0,buf);ss_s_str(SS_NUMROW/2,SS_NUMCOL/2-4,"YYYXXXYYY");



348 Appendix F TEST PLANS AND IMPLEMENTATIONSss_s_hlt(SS_NUMROW/2,SS_NUMCOL/2-4,9,1);ss_s_hlt(SS_NUMROW/2,SS_NUMCOL/2-1,3,0);ss_s_cur(SS_NUMROW/2,SS_NUMCOL/2);ss_s_ref();/*leave picture up until return*/gets(buf);ss_s_clrscn();ss_s_ref();ss_s_end();/*terminate curses*/endwin();/*close exception file*/fclose(sy_excfilp);return(0);}F.3 System TestingF.3.1 BSHAM system TP and TIF.3.1.1 Test planassumptionsSY MAXINT = 999SY MEMSIZ = 100test environmententire BSHAM systeminput stored in �lesoutput saved in �les, checked with delta testingdirectory structure:sham/input/ - test cases stored one per �leexp/ - expected results of test case (same �le name)act/ - actual results of test case (same �le name)sham/cmdlin.exp - expected results for command-line test casessham/cmdlin.act - actual results for command-line test casestest case selection strategyspecial valuescommand-line errorseach command-line error once



F.3. SYSTEM TESTING 349content of input �leone load-time exceptionevery run-time exception onceSHAM instructionshalt with pc = f0; SY MEMSIZ=2; SY MEMSIZ � 1gprint with interval rule on content accumulatortest casescommand-line errorshardcoded in Makefileload-time exceptionsldexc: one load-time exceptionrun-time exceptionsaddrexc: mem[pc] = ADD:object, mem[pc+ 1] = 100arithexc: acc = 500 + 500noopexc: pc = 99, mem[pc] = LOADCON:objectobjectexc: mem[pc] = 10normal-casehalt[1-3]: HALT instruction, check with PRINT instructionprint: print special valuestwo+two,sum: programs from Appendix of RStest implementation strategytarget runtestb in Makefiletest cases for command-line errorsfor each �le f in input/bsham f >act/fdiff act/f exp/fstatement coverage for sham and exec measured using the UNIX utility tcov100% coverage for statements not associated with ISHAMF.3.1.2 Test implementationCommand-line test cases input commandsbsham >cmdlin.actbsham foo >>cmdlin.actCommand-line test cases expected output: cmdlin.expCommand line error. No file name specifiedCommand line error. Cannot open file: fooInput �le: input/addrexcloadcon 100 % store bad address 100 as operand of add instructionstore 5add 0



350 Appendix F TEST PLANS AND IMPLEMENTATIONSExpected output: exp/addrexcExecution exception at 4. Illegal operand: 100Input �le: input/arithexcloadcon 500store 10loadcon 500add 10 % 500+500Expected output: exp/arithexcExecution exception at 6. Arithmetic overflowInput �le: input/halt1haltExpected output: exp/halt1Input �le: input/halt2loadcon 8 % store "print, halt" in locations 50,51store 50loadcon 9store 51loadcon 5 % 5 should be printed oncebr 50Expected output: exp/halt25Input �le: input/halt3loadcon 8 % store "print, halt" in locations 98,99store 98loadcon 9store 99loadcon 5 % 5 should be printed oncebr 98Expected output: exp/halt35



F.3. SYSTEM TESTING 351Input �le: input/ldexcloadcon 5xxxhaltExpected output: exp/ldexcLoad exception at 2. Illegal instruction: xxxInput �le: input/noopexcloadcon 7 % store "loadcon" in location 99store 99br 99 % should cause NOOPERRExpected output: exp/noopexcExecution exception at 99. Operand not accessibleInput �le: input/objectexcloadcon 10 % store invalid command 10 in location 4store 4Expected output: exp/objectexcExecution exception at 4. Illegal instruction: 10Input �le: input/printprintloadcon 999printloadcon 500printloadcon 0printhaltExpected output: exp/print09995000



352 Appendix F TEST PLANS AND IMPLEMENTATIONSInput �le: input/sumloadcon 5 % value of nstore 40 % location 40: value of n, decremented each iterationloadcon 0store 41 % location 41: value of sumloadcon 1store 42 % location 42: 1, used for decrementingload 40brz 28 % check if 0add 41 % add to the sumstore 41load 40 % subtract 1 from nsub 42store 40br 14load 41 % print value of sumprinthaltExpected output: exp/sum15Input �le: input/two+twoloadcon 2store 20loadcon 2add 20printhaltExpected output: exp/two+two4F.3.2 ISHAM system TP and TIF.3.2.1 Test planassumptionsSY MAXINT = 999SY MEMSIZ = 100test environmententire ISHAM systemSHAM programs stored in �les, ISHAM commands entered manuallyoutput checked manually



F.4. DEMONSTRATION MODULES 353directory sham/input/ contains test cases, one per �letest case selection strategyspecial valuesone load-time exceptionone run-time exceptionuser commandsone invalid commandSTEP through entire programEXIT at beginning, in the middle, and at HALT instructiontest casesldexc: one load-time exceptionarithexc: one run-time exceptiontwo+two,sum: programs from Appendix of RStest implementation strategytest cases must be run manuallyrun four test cases described abovefor aritherr, step through program until run-time exceptionfor two+two and sum, step through entire programuse two+two to test special user commandsstatement coverage for sham and exec measured using the UNIX utility tcov100% coverage for statements associated with ISHAMtcov must be run manually after the test casesconsiderationsThe testing of the ISHAM version of exec is included in the testing of ISHAM.F.4 Demonstration ModulesF.4.1 stack TP and TIF.4.1.1 Test planassumptionsPS MAXSIZ > 2test environmentPGMGEN driverno stubstest case selection strategyspecial valuesmodule stateinterval rule on size of stack: [0; PS MAXSIZ]access routine parametersnonetest cases



354 Appendix F TEST PLANS AND IMPLEMENTATIONSfor each of the special module state values,call ps s push, ps s pop, ps g top, ps g depthcheck exception behaviorafter set calls, check get call valuestest implementation strategyload(n)loads stack with 10; 20; : : : ; 10� nstatement coverage measured using the UNIX utility tcovF.4.1.2 Test implementationPGMGEN script: stack.scriptmoduleps_accprogs<s_init,s_push,s_pop,g_top,g_depth>exceptions<empty,full>globcod{%#include "system.h"#include "stack.h"static void load(n)int n;{ int i;ps_s_init();for (i = 0; i < n; i++)ps_s_push((i+1)*10);}%}cases/*empty stack*/<load(0).s_push(10), noexc, g_top(), 10, int><load(0).s_push(10), noexc, g_depth(), 1, int><load(0).s_pop(), empty, dc, dc, dc><load(0).g_top(), empty, dc, dc, dc><load(0), noexc, g_depth(), 0, int>/*partially full stack*/



F.4. DEMONSTRATION MODULES 355<load(2).s_push(30), noexc, g_top(), 30, int><load(2).s_push(30), noexc, g_depth(), 3, int><load(2).s_pop(), noexc, g_top(), 10, int><load(2).s_pop(), noexc, g_depth(), 1, int><load(2), noexc, g_top(), 20, int><load(2), noexc, g_depth(), 2, int>/*full stack*/<load(PS_MAXSIZ).s_push(0), full, dc, dc, dc><load(PS_MAXSIZ).s_pop(), noexc, g_top(), (PS_MAXSIZ-1)*10, int><load(PS_MAXSIZ).s_pop(), noexc, g_depth(), PS_MAXSIZ-1, int><load(PS_MAXSIZ), noexc, g_top(), PS_MAXSIZ*10, int><load(PS_MAXSIZ), noexc, g_depth(), PS_MAXSIZ, int>Interactive driver: stack i.c#include "system.h"#include "stack.h"#define QUIT 0#define S_INIT 1#define S_PUSH 2#define S_POP 3#define G_TOP 4#define G_DEPTH 5#define G_DUMP 6#define BUFLEN 80FILE *sy_excfilp = stderr;int nextcall(){ int reply;char s[81];do { printf("\nEnter command:\n");printf("\t0:quit\n");printf("\t1:s_init\n");printf("\t2:s_push\n");printf("\t3:s_pop\n");printf("\t4:g_top\n");printf("\t5:g_depth\n");printf("\t6:g_dump:");gets(s);if (sscanf(s,"%d",&reply) != 1)reply = -1; /*user error - stay in loop*/;



356 Appendix F TEST PLANS AND IMPLEMENTATIONS} while (reply < 0 || reply > G_DUMP);return(reply);}int readint(msg)char *msg;{ int reply,found;char s[BUFLEN];found = 0;while (!found) {printf(msg);gets(s);if (sscanf(s,"%d",&reply) == 1)found = 1;}return (reply);}main(){ int reply,i;while ((reply=nextcall()) != QUIT) {switch(reply) {case S_INIT:ps_s_init();break;case S_PUSH:i = readint("Enter element:");ps_s_push(i);break;case S_POP:ps_s_pop();break;case G_TOP:i = ps_g_top();printf("returns %d\n",i);break;case G_DEPTH:i = ps_g_depth();printf("returns %d\n",i);break;case G_DUMP:ps_g_dump();break;}



F.4. DEMONSTRATION MODULES 357}return(0);}F.4.2 symtbl TP and TIF.4.2.1 Test planassumptionsST MAXSYMLEN � length of ST MAXSYMS � 1 in string formST MAXSYMS > 0assumptionsPGMGEN driverno stubstest case selection strategyspecial valuesmodule statenumber of symbols in table: f0; 1; ST MAXSYMS=2; ST MAXSYMSgsymbol length: short, ST MAXSYMLENaccess routine parametersst s add: strings of length f0; ST MAXSYMLEN + 1; 2� ST MAXSYMLENgst s add; st s loc; st g loc; st g exsym: empty stringtest casesexceptionsfor each special module stateadd overlength symbolsif the table is fulladd a symbol not in the tableset and get locations for symbols not in tableadd every symbol in the tablenormalcheck st g exsym for empty string in empty tableadd the empty string, check and change its locationfor each special module statecheck table lengthcheck that a very long symbol is not in tablefor each i in [0; ST MAXSYMS � 1]if i in [0; t siz � 1]check t sym(i) in table with correct locationcheck st s loc resets locationelse check t sym(i) not in tabletest implementation strategyC functions to support iterating over the special module states,viewed as a sequence:



358 Appendix F TEST PLANS AND IMPLEMENTATIONSvoid t init: initialize to the �rst statevoid t next: load next stateint t end: return true if no states remainC functions to generate and check symbols in current state:int t siz: number of symbols in current statechar *t sym(i): i-th symbol in current stateint t loc(i): location of i-th symbol in current statechar *t mksym(i; l): string consisting of i converted to ASCII,padded right with *'s to length lstatement coverage measured using the UNIX utility tcovF.4.2.2 Test implementationPGMGEN script: symtbl.scriptmodulest_accprogs<s_init,s_add,g_exsym,s_loc,g_loc,g_siz>exceptions<exsym,maxlen,notexsym,full>globcod{%#include "system.h"#include "symtbl.h"#define T_FILLCHAR '*'static int i,cur;static struct {int syms; /*number of symbols*/int symlen; /*symbol length*/} tbl[] = {{0,0},{1,0},{1,ST_MAXSYMLEN},{ST_MAXSYMS/2,0},{ST_MAXSYMS/2,ST_MAXSYMLEN},{ST_MAXSYMS,0},{ST_MAXSYMS,ST_MAXSYMLEN},{-1,0} /*sentinel*/};static void t_init(){



F.4. DEMONSTRATION MODULES 359cur = -1;}static char *t_mksym(i,len)int i,len;{ static char buf[2*ST_MAXSYMLEN+1];int j;sprintf(buf,"%d",i); /*convert i to ASCII*/if (len > strlen(buf)) {for (j = strlen(buf); j < len; j++) /*pad right with '*'*/buf[j] = T_FILLCHAR;buf[len] = '\0'; /*add string terminator*/}return(buf);}static void t_next(){ int i;cur++;st_s_init();for (i = 0; i < tbl[cur].syms; i++)st_s_add(t_mksym(i,tbl[cur].symlen),10*i);}static int t_end(){ return(tbl[cur].syms == -1);}static int t_siz(){ return(tbl[cur].syms);}static char *t_sym(i)int i;{ return(t_mksym(i,tbl[cur].symlen));}static int t_loc(i)int i;{ return(10*i);



360 Appendix F TEST PLANS AND IMPLEMENTATIONS}%}cases/*****exceptions*****/{%t_init();t_next();while (!t_end()) {%} /*add overlength symbols*/<s_add(t_mksym(0,ST_MAXSYMLEN+1),0), maxlen, dc, dc, dc><s_add(t_mksym(0,2*ST_MAXSYMLEN),0), maxlen, dc, dc, dc>/*if the table is full, add a symbol not in the table*/{% if (t_siz() == ST_MAXSYMS)%} <s_add("x",0), full, dc, dc, dc>/*set and get locations for symbols not in the table*/<s_loc(t_mksym(t_siz(),0),0), notexsym, dc, dc, dc><s_loc("",0), notexsym, dc, dc, dc><g_loc(t_mksym(t_siz(),0)), notexsym, dc, dc, dc><g_loc(""), notexsym, dc, dc, dc>/*add every symbol in the table*/{% for (i = 0; i < t_siz(); i++)%} <s_add(t_sym(i),0), exsym, dc, dc, dc>{% t_next();}%}/*****normal case*****//*check g_exsym for empty string in empty table*/<s_init(), noexc, g_exsym(""), 0, bool>/*add the empty string, check and change its location*/<s_init().s_add("",10), noexc, g_exsym(""), 1, bool>< , noexc, g_loc(""), 10, int><s_loc("",20), noexc, g_loc(""), 20, int>{%t_init();t_next();



F.4. DEMONSTRATION MODULES 361while (!t_end()) {%} /*check table length*/< , noexc, g_siz(), t_siz(), int>/*check that a very long symbol is not in table*/< , noexc, g_exsym(t_mksym(0,2*ST_MAXSYMLEN)), 0, bool>{% for (i = 0; i < ST_MAXSYMS; i++) {if (i < t_siz()) {%} /*check t_sym(i) in table with correct location*/< , noexc, g_exsym(t_sym(i)), 1, bool>< , noexc, g_loc(t_sym(i)), t_loc(i), int>/*check s_loc resets location*/<s_loc(t_sym(i),t_loc(-i)), noexc,g_loc(t_sym(i)), t_loc(-i), int>{% } else {%} /*check t_sym(i) not in table*/< , noexc, g_exsym(t_sym(i)), 0, bool>{% }}t_next();}%}Interactive driver: symtbl i.c#include "system.h"#include "symtbl.h"#define QUIT 0#define S_INIT 1#define S_ADD 2#define G_EXSYM 3#define S_LOC 4#define G_LOC 5#define G_SIZ 6#define G_DUMP 7#define BUFLEN 80FILE *sy_excfilp = stderr;int nextcall(){



362 Appendix F TEST PLANS AND IMPLEMENTATIONSint reply;char s[81];do { printf("\nEnter command:\n");printf("\t0:quit\n");printf("\t1:s_init\n");printf("\t2:s_add\n");printf("\t3:g_exsym\n");printf("\t4:s_loc\n");printf("\t5:g_loc\n");printf("\t6:g_siz\n");printf("\t7:g_dump:");gets(s);if (sscanf(s,"%d",&reply) != 1)reply = -1; /*user error - stay in loop*/;} while (reply < 0 || reply > G_DUMP);return(reply);}int readint(msg)char *msg;{ int reply,found;char s[BUFLEN];found = 0;while (!found) {printf(msg);gets(s);if (sscanf(s,"%d",&reply) == 1)found = 1;}return (reply);}main(){ int reply,i;char s[80];while ((reply=nextcall()) != QUIT) {switch(reply) {case S_INIT:st_s_init();break;case S_ADD:printf("Enter sym:");



F.4. DEMONSTRATION MODULES 363gets(s);sscanf(s,"%s",s);i = readint("Enter loc:");st_s_add(s,i);break;case G_EXSYM:printf("Enter sym:");gets(s);sscanf(s,"%s",s);i = st_g_exsym(s);printf("returns %d\n",i);break;case S_LOC:printf("Enter sym:");gets(s);sscanf(s,"%s",s);i = readint("Enter loc:");st_s_loc(s,i);break;case G_LOC:printf("Enter sym:");gets(s);sscanf(s,"%s",s);i = st_g_loc(s);printf("returns %d\n",i);break;case G_SIZ:i = st_g_siz();printf("returns %d\n",i);break;case G_DUMP:st_g_dump();break;}}return(0);}





Appendix GCode Format RulesG.1 Identi�er names1. Module pre�x is used on all exported identi�ers and on no others.2. Naming is mnemonic and consistent.3. Identi�ers declared by #define are all uppercase. Other identi�ers are alllowercase.G.2 Coding style1. Whitespace. Generally: minimize vertical and horizontal whitespace.Exception|add a blank line:� Following the last #include.� Following the last global declaration.� Between declarations and executable code in functions.� Between each adjacent pair of functions.� Between major blocks of code.Exception|add a space:� Around assignment, relational, and logical operators.� Following for, while, if, and switch.� Following `;' in for loop headers.� Before `{' and following `}'.365



366 Appendix G CODE FORMAT RULES2. Line breaks. Generally: one statement per line.Speci�cally: `{' on same line as if, else, switch, for, while, and do buton a new line for the start of a function. In all cases, `}' on the start of anew line.3. Indenting. Generally: indenting with tabs only.Indent one tab stop within functions, struct, if, else, switch, for,while, and do.Place the `}' at same level as the line containing the matching `{'.4. Comments. Generally: only two forms: inline and block.Inline: no space after /* or before */.Block: /* to start, column of *'s in column 1, and */ to end.5. Local functions. Speci�cation at top of function.De�ned and implemented before invocation, where possible.



Appendix HExercisesH.1 Chapter 2: Software EngineeringFundamentals1. Name three serious problems with current software documentation.2. What are the four roles associated with software speci�cations?3. What is the di�erence between set, get, and set-get access routines?4. What is the most important di�erence between a Module Interface Speci-�cation and a Module Internal Design?5. In the speci�cation trichotomy, what is the most important di�erence be-tween exceptions and assumptions?6. What are the key di�erences between faults and failures?7. In inspection meetings, why doesn't the work product author also serve asreader?8. Provide a justi�cation for Dijkstra's Law of Testing.9. Why is it important to use both inspection and testing on Module Imple-mentations?10. Frequently Module Implementations are tested in their production envi-ronments. Why does this approach lead to poor controllability and ob-servability?
367



368 Appendix H EXERCISESH.2 Chapter 3: Mathematical FundamentalsUnless stated otherwise, assume x, y, and z are of type integer and bis of type boolean.1. For each pair of sets S1 and S2, what is S1 \ S2?(a) S1 = [3::7] and S2 = f1; 3; 5g(b) S1 = [7::3] and S2 = f1; 3; 5g(c) S1 = fhx; yi j x < yg and S2 = fh1; 5i; h2; 2i; h3;�1ig(d) S1 = fhx; yi j y2 = xg and S2 = fh4; 2i; h4;�2i; h�4; 2ig2. For each relation R and domain value v, specify the set of range elementscorresponding to v.(a) R = fhx; yi j x < yg and v = 0(b) R = fhx; yi j y2 = xg and v = �1(c) R = fhx; yi j y2 = xg and v = 0(d) R = fhx; yi j y2 = xg and v = 13. Which of the following relations is also a function? If the relation is not afunction, provide a domain element that has at least two range elementsrelated to it.(a) fhx; yi j x < yg(b) fhx; yi j y3 = xg(c) fhx; yi j y = x3g(d) fhhx; yi; bi j b = (x < y)g4. For each function F and each element x of S, what is F (x)?(a) F = fhx; yi j y3 = xg and S = f�8; 0; 8g(b) F = fhx; bi j b = (x 6= 5)g and S = f1; 5g(c) F = fhhx; yi; bi j b = (x < y)g and S = fh1; 5i; h2; 2i; h3;�1ig5. For each pair of sets S1 and S2, what is S1 \ S2?(a) S1 = fx j x < 10 ^ x � 0 _ x < 5g and S2 = f�1; 3; 5; 12g(b) S1 = fx j x < 10 _ x � 0 ^ x < 5g and S2 = f�1; 3; 5; 12g(c) S1 = fx j x < 10! x > 0g and S2 = f0; 5; 10g(d) S1 = fhx; yi j (y = 1 _ y = 2) ^ x � 0 ^ x < ygand S2 = fh1; 1i; h1; 2i; h1; 3ig



H.2. CHAPTER 3: MATHEMATICAL FUNDAMENTALS 3696. For each logical expression below, is it true or false? If it is true, give ageneral formula for a value of y (in terms of the value for x) that satis�esthe expression. If it is false, give a value of x for which no value of y existsthat satis�es the expression.(a) (8x)(9y)(x > y)(b) (8x)(9y)(y > 0 ^ x > y)(c) (8x)(9y)(x > 0 ^ x > y)(d) (8x)(9y)(y > 0 ^ x > y)7. For each logical expression below and each element s of S, is the expressiontrue or false for s?(a) (8x 2 s)(x > 0) and S = ffg; f3g; f0; 3; 5ggAssume S : set of set of integer.(b) (9i 2 [0::jsj � 1])(s[i] > 0) and S = fhi; h3i; h0; 3; 5igAssume S : set of sequence of integer.(c) (9v 2 s)(v:x > v:y) and S = ffg; fh3; 1ig; fh1; 3i; h�3; 3iggAssume S : set of tuple of (x; y : integer).8. For each of the informal expressions below, give an equivalent completelyformal logical expression.(a) The element x is the largest element in the set S.Assume S : set of integer.(b) There exists an element in the set S that is larger than x.Assume S : set of integer.(c) The element x is the largest element in the sequence S.Assume S : sequence of integer.(d) There exists an element in the sequence S that is larger than x.Assume S : sequence of integer.9. For each function F and each element x of S, what is F (x)? If x is not inthe domain of F , write \F (x) is not de�ned."(a) F : set of integer! integerF (x) = the minimum element of xS = ffg; f5g; f3; 5gg(b) F : sequence of integer! integerF (x) = x[jxj � 1]S = fhi; h5i; h3; 5ig



370 Appendix H EXERCISES(c) F : tuple of (x; y : integer)! integerF (v) = v:x+ v:yS = fh1; 3i; h�3; 3ig(d) F : sequence of integer! set of integerF (s) = fx j x = s[i] for some i 2 [0::jsj � 1]gS = fhi; h3; 5i; h1; 3; 5; 3; 1ig(e) F : set of tuple of (id : integer; val : string)! set of stringF (s) = fx j (9v 2 s)(x = v:val)gS = ffg; fh3; "cat"i; h3; "dog"ig; fh1; "cat"i; h3; "cat"igg10. Assume that the state space consists of triples of values for variables x,y, and z. For each multiple assignment statement and each state values 2 S, determine the state resulting from executing the multiple assignmentstatement in state s.(a) x; y := 2� x; z � y and S = fh0; 1; 2i; h4; 4; 4i; h2;�1; 3ig(b) x; z := y; y and S = fh0; 1; 2i; h4; 4; 4i; h2;�1; 3ig(c) x; y; z := y + z; 2� z; x+ 1 and S = fh0; 1; 2i; h4; 4; 4i; h2;�1; 3ig11. Assume that the state space consists of triples of values for variables x,y, and z. For each multiple assignment statement and sequence of singleassignment statements, determine whether the multiple assignment state-ment de�nes the same function as the sequence of single assignment state-ments. If not, give values for x, y, and z for which the two are di�erent.(a) x; y := z; x+ z and x := z; y := x+ z(b) x; y := z; x+ z and y := x+ z;x := z(c) x; y := x+ y; x and x := x+ y; y := x(d) x; y := x+ y; x and x := x+ y; y := x� y12. For each sequence of assignment statements, de�ne an equivalent multipleassignment statement.(a) x := z; y := z � y(b) x := y; y := x+ y(c) x := 10; y := x+ z; z := y � 10(d) x := x+ y; y := x� y;x := x� y



H.2. CHAPTER 3: MATHEMATICAL FUNDAMENTALS 37113. For each function F and each element x of S, what is F (x)? If x is not inthe domain of F write \F (x) is not de�ned."(a) F : integer! integerF (x) = (x < 0) �x j x > 0) x)S = f�5; 0; 5g(b) F : integer! integerF (x) = (x > 5) (x < 10) 2� x j true) 10) j true) 5)S = f0; 5; 10g(c) F : integer � integer! integerF (hx; yi) = (x > y ) x� y j x < y ) y � x j true) 0)S = fh2; 4i; h4; 2i; h3; 3ig(d) F : sequence of integer! integerF (s) = (jsj > 0) minimum element of s j true) 0)S = fhi; h3i; h1; 3; 5; 3; 1ig14. Rewrite each conditional rule below in tabular form. Then, for each condi-tional rule and each state value s 2 S, determine the state resulting fromexecuting the conditional rule in state s. Assume that the state spaceconsists of triples of values for variables x, y, and z.(a) (z > 0) x := x+ y j true) y := x+ y)S = fh0; 1; 2i; h1; 2; 0i; h2; 3;�1ig(b) x; y := (z > 0) z j true) �z); zS = fh0; 1; 2i; h1; 2; 0i; h2; 3;�1ig(c) (z > 0) (x > y ) z := x j true) z := y)j z < 0) (x < y ) z := x j true) z := y) j true) z := 0)S = fh0; 1; 2i; h1; 2; 0i; h2; 3;�1ig15. Rewrite each conditional rule below in tabular form. For each pair ofconditional rules, determine whether the two rules are equivalent. If theyare not, give values for the variables for which the two rules di�er. Assumethat the state space consists of triples of values for variables x, y, and z.(a) (x � y ) x j true) y) and (x � y ) x j y � x) y)(b) (x < y ) x j true) y) and (x < y ) x j y < x) y)(c) (x > 5) (x < 10) 2� x j true) 10) j true) 5)and (x > 9) 10 j x > 5) 2� x j true) 5)



372 Appendix H EXERCISESTable H.1 Transition function for FSM exerciseCondition T (s; x)x < 0 s = �1 strue s� 1x > 0 s = 1 strue s+ 1x = 0 s(d) (x < y ) (x < z ) x j true ) z) j true ) (y < z ) y j true ) z))and (x � y ^ x � z ) x j y � x ^ y � z ) y j z � x ^ z � y ) z)16. Consider an FSM with the set of states S = f�1; 0; 1g, the initial states0 = 0, the set of inputs I = integer, the transition function T shown inTable H.1, the event-output functionE(s; x) = (s = 0) Z j true) (x < 0) N j x > 0) P j true) Z))and the condition-output functionC = fh�1; Ni; h0; Zi; h1; P ig:For each state s and input element x below, what are the values for T (s; x),E(s; x), and C(s)?(a) s = �1 and x = �3(b) s = �1 and x = 5(c) s = 0 and x = 5(d) s = 1 and x = �3(e) s = 1 and x = 017. For each FSM below, we de�ne the set of states S, the initial state s0, andthe set of inputs I . We also give an informal de�nition for the transitionfunction T , the event-output function E, and the condition-output functionC. In each case, provide formal de�nitions for T , and for E and C whenthey are present.(a) S = f0; 1; 2g, s0 = 0, and I = fUP;DOWNg. If the input is UP , thenthe transition function increments the state modulo 3. For example,T (2; UP ) = 0. If the input is DOWN , then the transition functiondecrements the state, unless it is 0; in that case the state is unchanged.There is no event-output function. The condition-output functionreturns the value of the state.



H.2. CHAPTER 3: MATHEMATICAL FUNDAMENTALS 373Table H.2 sset module state machine|access routinesRoutine name Inputs Outputs Exceptionss inits add integer fullmems del integer notmemg mem integer boolean(b) S = sequence [3] of integer, s0 = h1; 2; 3i, and I = fL;Rg. If theinput is L, then the transition function rotates the elements of thesequence to the left, and places the �rst element of the sequence atthe end. For example, T (h1; 2; 3i; L) = h2; 3; 1i. If the input is R,the transition function rotates the elements of the sequence to theright, and places the last element of the sequence at the front. Theevent-output function returns the �rst element of the old sequence ifthe input is L, and otherwise it returns the last element of the oldsequence. There is no condition-output function.18. Consider the sset (simple set) module, which provides access to a set ofat most N integers. The access routines for sset are shown in Table H.2,and the access routine semantics are shown in Figure H.1. For each ofthe traces below, show the corresponding execution table, assuming thatN = 3.(a) s init:g mem(10):s add(10):g mem(10):s del(10):g mem(10)(b) s init:s add(10):s add(20):s add(30):s add(40):g mem(40):s del(40)(c) s init:s add(10):s init:g mem(10)19. Consider the iset (iterator set) module, an extension of sset from the pre-vious exercise that allows sequential access to the elements of the set. Theaccess routines for iset are shown in Table H.3, and the access routinesemantics are shown in Figure H.2. For each of the traces below, showone possible execution table assuming that N = 3.(a) s init:s add(10):s mod(SEQ):g end:sg next:g end:sg next(b) s init:s add(10):s add(20):s mod(SEQ):sg next:sg next(c) s init:s add(10):sg next:g end(d) s init:s add(10):s mod(SEQ):g mem(10):s del(10):sg next:g end



374 Appendix H EXERCISES
state variabless : set of integeraccess routine semanticss init:transition: s := fgexceptions: nones add(x):transition: s := s [ fxgexceptions: exc := (jsj = N ) full j x 2 s) mem)s del(x):transition: s := s� fxgexceptions: exc := (x 62 s) notmem)g mem(x):output: out := x 2 Sexceptions: noneFigure H.1 sset module state machine|semantics

Table H.3 iset module state machine|access routinesRoutine name Inputs Outputs Exceptionss inits add integer fullmemmods del integer notmemmodg mem integer booleans mod fSET; SEQgsg next integer nonextmodg end boolean mod



H.3. CHAPTER 5: REQUIREMENTS SPECIFICATION 375state variabless; is : set of integerm : fSET; SEQgaccess routine semanticss init:transition: s; is;m := fg; fg; SETexceptions: nones add(x):transition: s := s [ fxgexceptions: exc := (m = SEQ) mod j jsj = N ) full j x 2 s) mem)s del(x):transition: s := s� fxgexceptions: exc := (m = SEQ) mod j x 62 s) notmem)g mem(x):output: out := x 2 sexceptions: nones mod(mod):transition: (mod = SEQ) is;m := s; SEQ j mod = SET ) is;m := fg; SET )exceptions: nonesg next:transition-output: is; out := is� fxg; x where x 2 isexceptions: exc := (m = SET ) mod j is = fg ) nonext)g end:output: out := (is = fg)exceptions: exc := (m = SET ) mod)Figure H.2 iset module state machine|semanticsH.3 Chapter 5: Requirements Speci�cation1. What problems are likely to arise if a large system is developed withoutan RS?2. Why is it important to record expected changes in the RS?3. For each of the SHAM programs below, what is the exact output speci�edby the BSHAM RS?(a) loadcon 1store 99loadcon 10printsub 99brp 6halt



376 Appendix H EXERCISES(b) load 5store 6loadcon 3 ?loadcon 105store 105(c) load 2store 99load 3store 98store 0load 9printadd 99store 9load 98br 84. Write a SHAM program to compute the sum of three integers. Assumethat you are given the following code fragment:loadcon xstore 97loadcon ystore 98loadcon zstore 99Also assume that x, y, and z are non-negative and that x + y + z 2shamintegerT . Your task is to complete the program by writing code toprint the value of x+ y + z.5. Write a SHAM program to compute the minimum of two integers. Assumethat you are given the following code fragment:loadcon xstore 98loadcon ystore 99Also assume that x and y are in shamintegerT . Your task is to completethe program by writing code to print the value of min(x; y).6. Write a SHAM program to compute the product of two integers. Assumethat you are given the following code fragment:loadcon xstore 98



H.5. CHAPTER 7: MODULE INTERFACE SPECIFICATION 377loadcon ystore 99Also assume that x and y are non-negative and that x�y 2 shamintegerT .Your task is to complete the program by writing code to print the value ofx� y.7. Prove that the speci�cation for the BSHAM load phase is complete. Showthat, for each srcfil line that is exception-free and not overlong, the objectcode to be generated is clearly speci�ed.H.4 Chapter 6: Module Decomposition1. Suppose that you have been asked to modify SHAM for French users. Namethe modules that must be modi�ed to change the exception messages toFrench.2. In the current design, exception message text is contained in several mod-ules. State the pros and cons of having an Exception Message module thatcontains all of the exception message text.3. For each change named in the BSHAM Expected Changes section, namethe module(s) that would be a�ected if that change were made.4. For each change named in the ISHAM Expected Changes section, namethe module(s) that would be a�ected if that change were made.5. In the current design, command-line parameters are handled by the Shammodule. Discuss the pros and cons of having a Command Line modulewhich does all handling of command-line parameters.6. In the current design, adding a new instruction is likely to a�ect the loadand absmach modules, and perhaps others as well. Is there a way toencapsulate this change in a single module?H.5 Chapter 7: Module Interface Speci�cation1. What are the main disadvantages of using the implementation of a moduleas its interface speci�cation?2. What is the most important di�erence between the interface syntax andthe interface semantics?3. In the SHAM approach to exceptions, how must the MI signal the occur-rence of exception E?



378 Appendix H EXERCISES4. Which access routine idiom corresponds most closely to the service pro-vided by the C standard input function getc?5. Why are two access routine idioms provided for tuples? Isn't one idiomsu�cient?6. Which of the �ve quality criteria is the most important?7. This question is based on the stack MIS. For each of the traces below,provide an execution table. For this question, assume that MAXSIZ = 3.(a) s init:s pop:g top:s pop:s push(1):g top(b) s init:s push(1):s push(2):g top:s pop:g top(c) s init:s push(1):s push(2):s push(3):g top:s push(4):g top(d) s init:s push(1):s pop:s push(2):s pop:g top8. This question is based on the symtbl MIS. For each of the traces below,provide an execution table. For this question, assume that MAXSYMS = 3and MAXSYMLEN= 4.(a) s init:s add("cat"; 10):s add("dog"; 20):g siz:g loc("dog"):g exsym("cat"):g exsym("bat"):g exsym("mouse"):(b) s init:s add("cat"; 10):s add("dog"; 20):s add("mouse"; 30):g loc("mouse"):g loc("dog"):g siz:g exsym("dog")(c) s init:s add("cat"; 10):s add("dog"; 20):s add("cat"; 30):g loc("cat"):g siz(d) s init:s add("cat"; 10):s add("dog"; 20):s add("bat"; 30):s add("orca"; 40):g loc("orca"):g siz(e) s init:s add("cat"; 10):s add("dog"; 20):s loc("cat"; 20):g loc("cat"):s loc("bat"; 40):g loc("bat")This question is based on the token MIS. For each of the traces below,provide an execution table. For this question, assume thatMAXSTRLEN = 100; MAXIDLEN= 3; and MAXINTLEN = 2Also assume that variable vt is of type valtyp. In your executiontable, represent vt in the Output column with a term of the formhvt:val; vt:typi. For example, for token "abc", the Output columnshould contain h"abc"; IDi.9. (a) s init:s str(" 14 2$x 147 "):sg next(&vt):g end:sg next(&vt):g end:sg next(&vt):g end:sg next(&vt):g end(b) s init:s str("ab1 1ab"):sg next(&vt):g end:s str("ab1 1ab"):sg next(&vt):g end



H.6. CHAPTER 8: MODULE INTERNAL DESIGN 379H.6 Chapter 8: Module Internal Design1. What are the bene�ts of the MID as an intermediate work product betweenthe MIS and the Module Implementation?2. When is there little or no bene�t to having an MID?3. What are the roles of the state invariant and the abstraction function inan MID?4. This question is based on the symtbl MID. For each of the traces below,provide an execution table. For this question, assume that PS MAXSIZ = 3.To represent the concrete state, use a term of the formhhhs[0]; l[0]i; hs[1]; l[1]i; hs[2]; l[2]ii; niwhere s[i] represents the string stored in tbl[i]:sym, l[i] represents thelocation stored in tbl[i]:loc, and n represents the value of tblcnt. Use ?to indicate no value is speci�ed by the MID.(a) s init:s add("cat"; 5):g loc("cat")(b) s init:s add("cat"; 5):s add("dog"; 3):s loc("cat"; 1)5. This question is based on the token MID. For each expression below, indi-cate whether or not it is a state invariant for token. If it is a state invariant,briey explain why. If it is not a state invariant, show a trace that falsi�esthe expression.(a) cur 2 [0::leftnull(buf)]cur < leftnull(buf)!(buf[cur] 6= ' ' ^buf[leftnull(buf)� 1] = ' ')(b) buf[0::TK MAXSTRLEN+ 1] contains a nullcur 2 [0::leftnull(buf)]buf[cur] 6= ' ' ^buf[leftnull(buf)� 1] = ' '(c) buf[0::TK MAXSTRLEN+ 1] contains a nullcur 2 [0::leftnull(buf)]cur < leftnull(buf)!(buf[cur] 6= ' ' _buf[leftnull(buf)� 1] = ' ')6. This question is based on the token MID. For each of the traces below,provide an execution table. For this question, assume thatTK MAXSTRLEN = 5; TK MAXIDLEN = 3; and TK MAXINTLEN= 2To represent the concrete state, use a term of the formhhb[0]; b[1]; : : : b[6]i; ciwhere b[i] represents the i-th character in bu�er buf, and c represents thevalue of cur. Use ? to indicate no value is speci�ed by the MID.



380 Appendix H EXERCISES(a) s init:s str(" "):sg next(b) s init:s str("a3"):sg next(c) s init:s str(" a3 "):sg next(d) s init:s str("1 a "):sg next:sg next(e) s init:s str(" 1 a"):sg next:sg next:sg next7. Change the token MID so that it does not use a sentinel blank character,and so that it does not advance to the next token by skipping over leadingblanks. For example, the transition entry for tk s str is simpli�ed totk s str(s):transition: buf; cur := s; 08. Consider the sset (simple set) module, which provides access to a set of atmost N integers. The access routines for sset are shown in Table H.2, andthe access routine semantics are shown in Figure H.1. Assume that theconcrete state of sset is de�ned asstate variablesint set[N];int siz;where the array set is used to store the elements of the set, siz representsthe size of the set, and the set elements are stored in set[0::siz� 1].(a) De�ne an MID for the sset module with the above concrete state.(b) For each of the traces below, show the corresponding execution table,assuming that N = 3. Use a similar state representation to the onefor stack.i. s init:s add(10):g mem(10):s del(10):g mem(10)ii. s init:s add(30):s add(10):s add(20)iii. s init:s add(10):s add(20):s add(30):s del(20):s del(10):s del(30)9. Repeat the above exercise, but in this case maintain the elements in thearray set in sorted order with the smallest element in set[0].10. Consider the iset (iterator set) module, an extension of sset from exercise 8that allows sequential access to the elements of the set. The access routinesfor iset are shown in Table H.3, and the access routine semantics areshown in Figure H.2. Assume that the concrete state of iset is de�ned as



H.7. CHAPTER 9: MODULE IMPLEMENTATION 381state variablesint set[N];int siz,cur;enum fSET,SEQg mod;where the array set is used to store the elements of the set, siz representsthe size of the set, cur is used to iterate over the elements of the set, andmod is the current mode of operation (SET or SEQ). New elements shouldbe added to the end of the array set. To iterate over the elements of theset, initialize cur to 0 every time s mod(SEQ) is called and increment it inevery call to sg next.(a) De�ne the MID for the iset module with the above concrete state.(b) For each of the traces below, show the corresponding execution table,assuming that N = 3. Use a similar state representation to the onefor stack.i. s init:s add(10):s mod(SEQ):g end:sg next:g end:sg nextii. s init:s add(10):s add(20):s mod(SEQ):sg next:sg nextiii. s init:s add(10):s add(20):s del(10):s mod(SEQ):sg next11. Prove the correctness of the sset MID for exercise 8 using the veri�cationtechniques discussed in Section 8.7.H.7 Chapter 9: Module Implementation1. What are the advantages and disadvantages of enforcing the Code FormatRules?2. Why do we use stdout for the reporting of error messages in BSHAM, whilewe use a �le in ISHAM?3. Using stepwise re�nement, derive the implementation of s pop from itsspeci�cation in the stack MID.4. Using stepwise re�nement, derive the implementation of g loc from itsspeci�cation in the symtbl MID.5. What are the advantages and disadvantages of using conditional compila-tion in the implementations of exec and sham?6. This question is based on the symtbl MID and MI. Prove the correctnessof the implementation of s add using the veri�cation techniques discussedin Section 9.6.2.7. This question is based on the symtbl MID and MI. Prove the correctnessof the implementation of g loc using the veri�cation techniques discussedin Section 9.6.2.



382 Appendix H EXERCISES8. Prove that there are no subscript out of range errors in the symtbl MI.Note that an array is used to store each string in the symbol table and alsoto store all the symbol/location pairs.9. Prove that there are no endless loop errors in the token MI. Note thatthere are four loops in the token MI.H.8 Chapter 10: Testing1. If we were to test BSHAM in a strictly top-down fashion, we would �rsttest the sham Coordinator module using stubs for all the other modules.De�ne a TP for testing the BSHAM version of sham in this fashion.2. De�ne the smallest possible number of PGMGEN test cases that stillachieve statement coverage for the stack module. Do these test cases ade-quately test stack?3. How many paths are there through the token access routine s str? Howmany of those paths are feasible?4. This question is based on the stack TI.(a) Modify the stack TI so that it does not make any calls to s init,except for one call at the beginning of the script.(b) How would the TI of stack have to be changed if exceptions weresignaled by printing a message rather than by calling an exceptionhandler?5. This question is based on the symtbl TP and TI. Modify the TP and TI sothat it adequately tests an implementation that uses binary search (insteadof linear search) to look up the symbols in the table.6. This question is based on the absmach TP and TI. Currently, to test thebehavior of sg exec we test the return value, the value of the programcounter, and the value of the accumulator with three separate test cases.De�ne cmp and prt functions so that these three tests can be performedwith a single test case. Modify the absmach TP and TI to make use ofthese two functions.7. Consider the sset (simple set) module, which provides access to a set of atmost N integers. The access routines for sset are shown in Table H.2, andthe access routine semantics are shown in Figure H.1. Assume that theconcrete state of sset is de�ned asint set[N];int siz;



H.8. CHAPTER 10: TESTING 383where the array set is used to store the elements of the set, siz representsthe size of the set, and the set elements are stored in set[0::siz�1]. De�nea TP for the above module.8. Implement the TP from the previous exercise.9. Currently the TP and TI of scngeom only test the exception behavior. Thenormal-case behavior is tested while testing scndr. Modify the scngeomTP and TI so that the normal-case behavior is also tested.10. De�ne a TP and TI for the system test of BSHAM, assuming that nomodule testing is performed for any of the BSHAM modules.
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