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Abstract

This paper presents a cPU designed for educational applications to be used in the
Computer Architecture Laboratories, at 1¢/UNICAMP. The cpU will be used as a basic
plataform in order to introduce to the students novel design concepts such as VHDL,
Logic Synthesis and FPGAs as well as a means to explore computer architecture char-
acteristics and functionality. The paper also presents a few experiment possibilities,
where the students incorporate new functions to the basic CPU using advanced tech-
niques. The experiments complexity, the required design changes and their effects on
the FPGA programming are also discussed.

1 Introduction

Before the arrival of large programmable logic devices (PLDs), digital design could be imple-
mented either with off-the-shelf parts (ss1, Ms1), or with low and medium size PLDs or even
with asics (full custom, standard cells or gate arrays). A typical design could use a mix
of these types of circuits. The use of AsicCs, clearly the most sofisticated among them, was
determined by constraints such as cost, turn around time and functionality requirements.

In brazilian university teaching laboratories, the typical digital design was implemented
with prototype boards populated with off-the-shelf parts and small PLDs or PALs with
wirewrapping interconnections. The design of more complex systems was limited to research
projects, often implemented in full custom, with all its problems, high cost, long turn around
times, development complexities and lack of proper design automation tools.

With the availability of large pLDs a wide world of possibilities arises. It became pos-
sible to design increasingly large systems reaching 100,000 gates on a single chip. The
development cycle can be significantly shortened due to the use of powerful electronic de-
sign automation (EDA) tools, envolving the use of high level description languages such as
VHDL, followed by simulation and logic synthesis. In addition to that, programming can be
done by the designer, without the need of long fabrication delays. Other advantage is the
availability of programming technologies that allow the repeated use of the same component
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several times and rapid prototype development, with the production of many versions of a
design in a short time.

The decision to use custom components or ASICs to implement a design is based on the
following cost/benefit criteria:

development time: the development cycle of large PLDs is shorter than that for custom
circuits because they require neither complicated physical design nor post design fab-
rication;

cost: the low non recurring engineering (NRE) costs of large PLDs makes it more attractive
for small/medium scale production, even considering the considerably high cost per
part;

performance and integration scale: in general, custom circuits present better perfor-
mance, lower internal delays due to their better integration density and shorter inter-
nal interconnection wires;

special structures: some special structures are not widely available in PLDs and can only
be implemented in custom circuits.

1.1 The Use of VHDL, Logic Synthesis and FPGAs
at IC/UNICAMP

1c/UNICAMP, that has used VHDL and logic synthesis as research tool ([Kriiger 93] and
[Alexandrino 93]), started to explore FPGAs! as target technology to implement systems
under investigation [Adério 96]. The next step is the use of these technologies in teaching
labs at the university.

In a teaching lab the use of PLDs of FPGAs have several advantages:

o relatively complex designs can be implemented without the inconvenience of high
part count, reducing assembly problems with bad interconnection of large number of
signals; circuit debugging is also facilitated since the typical difficulty with prototype
boards in diagnosing design and assembly errors no longer occurs;

e reduced cost with connectors, board and parts;

e possibility of reuse of expensive components, when FPGA programming technologies
such as SRAM, EPROM or EEPROM are used.

The computer architecture laboratory at 1c/uNICAMP is equipped with EDA tools that
cover the complete development and implementation cycles of FPGAs, provided by the edu-
cational programs of Mentor Graphics and Altera Corporation. Undergraduate students are
first exposed to these tools in the logic design laboratory where they develop and implement
simple designs such as multipliers, dividers, memory testers and frequency meters. In the
computer architecture laboratory students will work with the cPU described in this paper

'The acronym FPGA is used in this paper to refer to large field programmable logic devices.
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in order to practice the basic operation concepts of its internal structures, the data path
and control unit. They will also use the presented design as a basis to grow and incorporate
new features, expanding the cPU functionality. Possible expansions are: implementation of
interruption, design of a register file and DMA interfacing circuitry.

This paper presents the design of a cpu for teaching applications according to the
design criteria described in Section 2. The cpuU design (Section 3) comprises the definition
of a basic instruction set and the design of the data path and control unit. The design,
after being described and simulated in VHEDL, was synthesized to a FPGA implementation
(Section 4). The basic design results are summarized in Section 4.3 and possible expansions
and improvements to be conducted by students in the laboratory are described in Section

5.

2 Design Criteria for the CPU

The cpPU has to have minimal functionality and yet be simple:

Functionality: The cpu has to be able to execute real programs. It has to have a basic
set of functions such as reading instruction and data from external devices, executing
arithmetic/logic operations and writing data onto external devices. For simplicity,
memory-mapped 1/0 was chosen as a means for interfacing with external devices. At
least some sort of basic branch capability has to be present in the instruction set,
both inconditional and conditional.

Simplicity: Data and address busses have the same width. The reading operation of an
opcode, a word or an address can be acomplished in a single memory access. That
choice simplifies the design of the data path and the control unit.

Having decided that both data and address bus have the same width now one has
to decide what is the minimal bus width to allow for the execution of reasonably sized
programs. 8 bits bus width was discarded because that would limit the maximum program
size in 256 bytes, which is unnacceptably small. Considering that increasing the bus width
causes no extra effort in the high level design using VEDL and also that the parts that will
be used to map the design have a high pin count packaging it was decided to adopt 16
bit-wide busses. This value offers 64K words addressing space, that in this architecture is
enough to acomodate programs larger than 24K instructions long.

Another simplification was restricting the cpU to implicit and direct addressing modes,
only. In the arithmetic and logic operations with a single operand, this is implicitly the
accumulator. In the operations that require two operands the cPU has a one-address ar-
chitecture, the first operand being implicit the accumulator and the second one directly

addressed.
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3 CPU Design

The cpu architecture is shown in figure 1. Two 16-bit wide busses and four signals pro-
vide interface with external devices. ABus and DBus are the address and data busses,

respectively.

wite

read

reset
ctu cl ock
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ar _out
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Figure 1: cpu Block Diagram.

The cPU operation is synchronous : clock rising edge determines the beginning of every
sequential operation. Reset signal provides sequential circuits initialization. Its operation
is asynchronous to assure immediate effects and to avoid the undesireble activation of control
signals like write during reset period. It is recommended to keep the reset signal at high
level for a minimum of two consecutive clock cycles at power-on to assure cPU correct
initialization.

Read and write are output signals acting as interface with external devices, either
memory or 1/0 devices since 1/0 operatins are implemented using memory—mapped 10
technique.

The data path and registers are also 16-bit wide. The CcPU has a program counter
(pc) and the following registers: instruction register (ir), address register (ar) and an
accumulator (acc).
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3.1 The Basic Instruction Set

Instructions are classified into three groups, according to their function :

o logic-arithmetic;

e data transfer;

e program sequence control;

For logic-arithmetic instructions, the accumulator (acc) is simultaneously an operand
and the destination register. If a second operand is required, as for in the add instruction,
it has to be fetched from memory and its address must follow the opcode. For data transfer
instructions, the data source or destination address must be provided. Finally, in control
instructions, it is necessary to know the target address. In this way, there are two instruction

formats one-word and two-word long instructions (2).
Table 1 presents the instruction set for the basic cpu .

Two—word Instruction

15 0 15

‘ opcode ‘ address ‘

15 0

One—word Instruction

Figure 2: Instruction Formats

Logic-Arithmetic Opcode | Words
add acc — acc + Mem[Address] Foo1 2
and acc — acc And Mem|[Address] F002 2
not acc — Not(acc) F003 1
or acc — acc Or Mem[Address] F004 2
shl | ace(i) — acc(i — 1), acc(0) — “07e=15...1 F005 1
shr | ace(i — 1) «— ace(t), acc(15) — “0”¢=1...15 | F006 1
sub acc — acc — Mem[Address] Fo07 2
Data Transfer
lda acc — Mem[Address] 0001 2
sta Mem[Address] — acc 0002 2
Program Control
jmp pc — Address 0003 2
jng pc — Address i f ace(15) = “17 0004 2
hlt Halt 0005 1

Table 1: Instruction Set?

?Mem[Address] denote the contents of memory location “address”.
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3.2 The Control Unit Design

The execution of an instruction comnsists of a sequence of elementary operations, performed
at hardware level, the micro-operations which can be combinational or sequential. Combina-
tional micro—operations define the function of a combinational circuit, such as the operation
performed by the alu or the input selected by ds. Sequential micro-operations define state
changes or data updating conditions in sequential circuits, such as Finite State Machines
(FsM) or registers. Micro-operations can be executed in parallel during a single clock cycle.

Instruction cycle can be defined as the sequence of micro—operations required to execute
one single CPU instruction. It can be decomposed into fetch cycle and execution cycle.
Execution cycle can be decomposed into opcode decoding, operand fetch from memory and
instruction execution[Hayes 88].

For the purpose of the Control Unit design, instruction cycle was divided in five phases:

1. opcode fetch from memory;
2. opcode decoding;

3. operand address fetch;

4. operand fetch;

5. execution;

Some instructions do not require all five phases in order to be executed and the micro-
operations performed at each phase are, in general, diferent from one instruction to another.

Figure 3 shows, for each cpU instruction, the phase sequence needed for its execution.
Each rectangle represents one phase that is the result of the simultaneous execution of
several micro-operations, described inside the rectangle. Fach phase lasts exactelly one
clock cycle. It is important to notice that combinational micro-operations are active during
the whole clock cycle whereas the sequential ones are active only at clock rising edge, which
marks the ending of the current phase and the beginning a the new one.

As an example, the five phases for the add instruction are:

1. opcode fetch from memory: a memory read operation is performed. The adress is
provided by pec and the data fetched via DBus is stored into register ir;

2. opcode decoding : performed by combinational circuits inside the Control Unit;

3. operand address fetch : a memory read operation is performed. The address is pro-
vided by pc, and the fetched data is stored into ar;

4. operand fetch : memory read operation, addressed by ar. Since this memory read is
extended until phase 5, no storing is required;

5. add execution: the Control Unit generates the operation code for the alu, which adds
the contents of acc and the value present at DBus (the operand from memory). The
result is stored into acc at the end of this phase.
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DBus<- ( pc)
READ
ir<-DBus
pc<-(pc)+1
instruction
decode
®
add and not or shl shr
ABus<- (pc) ABus<- (pc) ABus<- (pc)
READ READ READ
ar <- DBus ar <- DBus ar <- DBus
pc<-(pc) +1 pc<-(pc) +1 pc<-(pc) +1
ABus<- (ar) ABus<- (ar) ABus<- (ar)
READ READ READ
acc<- acc<- acc<- acc<- acc<- acc<-
(acc) +DBus (acc) “DBus (acc)’ (acc) v DBus (acc) << (acc)>>
® -
sub | da sta jmp 1ng hl't
ABus<- (pc) ABus<- (pc) ABus<- (pc) suspends
READ READ READ program
ar <- DBus ar <- DBus ar <- DBus execution
pc<-(pc) +1 pc<-(pc) +1 pc<-(pc) +1
ABus<- (ar) ABus<- (ar) ABus<-(ar) ABus<- (ar)
READ WRI TE READ READ
acc<- DBus DBus<- (acc) pc<- DBus if (acc)<0
then
acc<- pc<- DBus
(acc) - DBus J/
®

Figure 3: Micro—operations Execution Flowchart.

The design of enhancements to the cpU functionality can begin with their mapping into
the execution flowchart. For example, to create a new instructions it is necessary to create
a new branch in the execution phase.

The cpu Control Unit was modeled as a FSM. The analysis of the micro-operations
flowchart, discussed in begin of the section 3.2, gives elements to define the states and
the state transition sequences needed to model the State Machine. The State Transition
Diagram for the Control Unit FSM is shown in figure 4. Seven states where defined: R,
50, S1, 52, 53, 5S4 and H. States SO to S4 corresponds to the normal CPU operation; state
R represents the cpPU resetting and H, the hold state, when CPU operation is disabled.
Transitions between states are synchronous with respect to the clock signal, except for
transitions to R state, which is asynchronous for the reasons already discussed in section 3.

Table 2 lists the Control Unit signals and gives the active signal for each state. The
column 1/0 indicates whether a signal is an input or an output; column 1/E indicates
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reset="1

e. reset="1

reset="1

° reset="1’ Q

default transition on reset

not, shl, shr

special transitions,
by instruction

(a) jnp and jng only
(b) sta only
(c) lda only

Figure 4: The State Machine Transition Diagram of cpu

whether the signal is internal or external.

4 About the CPU Description Process

4.1 VHDL Description

The cpu was completely described using VHDL. The design has two hierarchical levels:
at the bottom level, each logic element presented in figure 1 was modeled using synthesis
oriented constructions, either RTL (Register Transfer Level) or behavioral architecture; at
the top level, the components were integrated into a structural architecture. As part of the
modeling process, each component was individually compiled, simulated at VEDL model,
implemented in the target FPGA and post simulated after placement and routing.

4.2 TFPGA Selection

The selection of a FPGA is based on an estimate of the required number of 1/0 pins and
logic elements, in terms of for the cPU described here. The figures are : 600 gates for
combinational circuits, 67 flip-flops and 38 1/0 pins.

Another characteristic to be considered is the technology of memory elements used to
store the configuration. srRAM based devices were selected devices due to case of repro-
grammability.

The combined result of these factors resulted in selecting Altera’s PLEX8000 family, in
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Signals | R | SO [S1|S2|S3|S4|H|I/O|I/E Description
reset I B

opcode I |

acc-msb I I | accumulator signal

alu-opc * 0 I
read V ViV 0 E

write * 0 E

pe-inc Vv Vv 0 I pc— (pe)+1
pec-ld * 0] I pc < DBuUS
ar-1d V 0 I ar « DBus
ir-1d V 0 I ir— DBus
acc-1d 1V 0 I acc— ds output
ds-sel * 0 I ds input select
as-sel Vo F 0 I as input select
ab-oe V ViVt 0 I as-tsp enable
db-oe * 0] I ds-tsp enable

Table 2: Control Unit Signals 3

particular, the EPF8282 device. The Altera part EPF8282 is a good choice to meet these
requirements.

4.3 Results

CPU simulation using Altera’s MAX-PLUS 11 software indicates the maximum clock frequency
of 12.5 MHz. An equivalent EPROM based device reaches 25 MHz.

The original circuit used about 85% of the logic blocks and 58% of the 1/0 pins. Minor
changes in the cpu functionality can be implemented on the same device but the more
complex modifications will require a larger device, like EPF8452 or EPF8636.

5 Expanding the CPU Functionality

This section presents a list of possible Computer Architecture Laboratory experiments in
order to expand the cpu functionality.
The changes can be made with no effects on the opcodes.

E1 : wait-state : use an aditional input signal and modify the VEDL code as shown in
figure 5 for one state transition. Change the VEDL code to implement the transitions
from states

3% It depends on the instruction being executed
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elsif (current_state=R) then elsif (current_state=R) then
next_state <= S0; next_state <= S0;
elsif (current_state=S0) then elsif ((current_state=S0) and
( ready=’0’)) then
next_state <= S1; next_state <= S0;
elsif (current_state=S1) then elsif ((current_state=S0) and
( ready=’1’)) then
next_state <= S1;
elsif ((current_state=S1) and
( ready=’0’)) then
(a) Original Code (b) Modified Code
Figure 5: Adding Wait-state feature
E2 : Stack : include a bidiretional counter (stack pointer) and two new instruction (push
and pop);
E3 : Sub-routine call : include two new instructions (call and ret);
E4 : Interrupt : use an aditional pin for interrupt request and a flip-flop for interruption
request memorization. Vectorized interrupt could be the next level of extension.
E5 : Register File : substitute the single accumulator by a register array. Add selection
logic and instructions to use the new registers.
E6 : DMA support : add two pins and modify the Control Unit code to support a
protocol like hold /holda.
E7 : Microprogrammed Control : this is a more complex design change, consisting in

exchanging the Hardwired Control Unit by another, a micro-programmed one. If an
external EPROM is used as micro-program memory, about 20 aditional 1/0 pins are
required.
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Structures/Resources Altered Area | Blocks | Pins
E1 1 state control unit 1 1
E2 1 counter , 1 select data path 100
2 instructions (push and pop) | control unit 3
E3 | 2 instructions (call and ret) unit control 3
E4 unit control 3 1
E5 N registers data path
control unit | O(N)
E6 1 state control unit 1 2
E7 micro—program memory
1 control unit control unit | O(N) | 20

Table 3: Possibles Computer Architecture Laboratory Experiments.

Table 3 summarizes, for each proposed modification, the amount of logic blocks, 1/0
pins and additional structures required.

6 Conclusions

This article described a simple CPU with enough functionality to be used in Computer
Architecture classes. The circuit was synthesized to a FPGA from a VHDL description
allowing students to expand its functionality using the same design methodology.

The implementation mapped the cPU VHDL description to an Altera FPGA (EPF8282),
with 84-pin pLcc packaging. The FPGA usage percentage was 59%, in terms of pins and
85% in terms of logic blocks. The maximum operating frequency was 12 MHz. The fact
that the resulting machine is slow does not have any negative effect on the cpu utilization
for educational purposes. The unnused resources on the FPGA are sufficient to implement
the functionality expansions described in Section 5.

The implementation of the printed circuit board that is going to receive the cpru, local
memory and glue logic, is under development. Such system is planned to be connected to a
IBM-PC compatible computer bus, which will provide facilities for keyboard, monitor, disk
and interface to 1/0 devices. However, the educational use of this CPU can start immediately,
since much can be done by the students in terms of VHEDL design and simulation of the
introduced functionality expansions. We also have plans to develop a loader for the cru
object programs.
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