
A Quick, Painless Introduction to the Perl Scripting Language

Norman Matloff
University of California, Davis
c�2002-2007, N. Matloff

May 15, 2007

Contents

1 What Are Scripting Languages? 3

2 Goals of This Tutorial 3

3 A 1-Minute Introductory Example 3

4 Variables 4

4.1 Types . 4

4.2 Scalars . 4

4.3 Arrays . 5

4.3.1 Structure . 5

4.3.2 Operations . 6

4.4 Hashes . 6

4.5 References . 7

4.6 Anonymous Data . 7

4.7 Declaration of Variables . 8

4.8 Scope of Variables . 8

5 Conditionals, Etc. 9

6 Subroutines 10

6.1 Arguments, Return Values . 10

6.2 Some Remarks on Notation . 11

1

6.3 Passing Subroutines As Arguments . 12

7 Confusing Defaults 12

8 String Manipulation in Perl 13

9 Perl Packages/Modules 14

10 OOP in Perl 16

10.1 General Mechanisms . 16

10.2 Overview . 16

10.3 Example . 18

11 Debugging in Perl 18

11.1 Perl’s Own Built-in Debugger . 19

11.2 GUI Debuggers . 20

12 To Learn More 20

A The Tie Operation 21

B Networking in Perl 24

2

1 What Are Scripting Languages?

Languages like C and C++ allow a programmer to write code at a very detailed level which has good
execution speed. But in many applications one would prefer to write at a higher level. For example, for text-
manipulation applications, the basic unit in C/C++ is a character, while for languages like Perl and Python
the basic units are lines of text and words within lines. One can work with lines and words in C/C++, but
one must go to greater effort to accomplish the same thing. C/C++ might give better speed, but if speed is
not an issue, the convenience of a scripting language is very attractive.

The term scripting language has never been formally defined, but here are the typical characteristics:

• Used often for system administration and “rapid prototyping.”

• Very casual with regard to typing of variables, e.g. no distinction between integer, floating-point or
string variables. Functions can return nonscalars, e.g. arrays, nonscalars can be used as loop indexes,
etc.

• Lots of high-level operations intrinsic to the language, e.g. stack push/pop.

• Interpreted, rather than being compiled to the instruction set of the host machine.

Today many people, including me, strongly prefer Python, as it is much cleaner and more elegant.

Our introduction here assumes knowledge of C/C++ programming. There will be a couple of places in
which we describe things briefly in a Unix context, so some Unix knowledge would be helpful.1

2 Goals of This Tutorial

Perl is a very feature-rich language, which clearly cannot be discussed in full detail here. Instead, our
goals here are to (a) enable the reader to quickly become proficient at writing simple Perl programs and (b)
prepare the reader to consult full Perl books (or Perl tutorials on the Web) for further details of whatever
Perl constructs he/she needs for a particular application.

Our approach here is different from that of most Perl books, or even most Perl Web tutorials. The usual
approach is to painfully go over all details from the beginning. For example, the usual approach would be
to state all possible forms that a Perl literal can take on.

We avoid this here. Again, the aim is to enable the reader to quickly acquire a Perl foundation. He/she should
then be able to delve directly into some special topic, with little or not further learning of foundations.

3 A 1-Minute Introductory Example

This program reads a text file and prints out the number of lines and words in the file:

1But certainly not required. Again, Perl is used on Windows and Macintosh platforms too, not just Unix.

3

1 # ome.pl, introductory example
2

3 # comments begin with the sharp sign
4

5 # open the file whose name is given in the first argument on the command
6 # line, assigning to a file handle INFILE (it is customary to choose
7 # all-caps names for file handles in Perl); file handles do not have any
8 # prefixing punctuation
9 open(INFILE,$ARGV[0]);
10

11 # names of scalar variables must begin with $
12 $line_count = 0;
13 $word_count = 0;
14

15 # <> construct means read one line; undefined response signals EOF
16 while ($line = <INFILE>) {
17 $line_count++;
18 # break $line into an array of tokens separated by " ", using split()
19 # (array names must begin with @)
20 @words_on_this_line = split(" ",$line);
21 # scalar() gives the length of any array
22 $word_count += scalar(@words_on_this_line);
23 }
24

25 print "the file contains ",$line_count," lines and ",
26 $word_count, " words\n";

We’d run this program, say on the file x, by typing

perl ome.pl x

Note that as in C, statements in Perl end in semicolons, and blocks are defined via braces.

4 Variables

4.1 Types

Type is not declared in Perl, but rather is inferred from a variable’s name (see below), and is only loosely
adhered to.

Note that a possible value of a variable is undef (i.e. undefined), which may be tested for, using a call to
defined().

Here are the main types:

4.2 Scalars

Names of scalar variables begin with $.

Scalars are integers, floating-point numbers and strings. For the most part, no distinction is made between
these.

There are various exceptions, though. One class of exceptions involves tests of equality or inequality. For
example, use eq to test equality of strings but use == for numbers.

4

The ‘.’ is used to concatenate strings. For example,

$x = $x . "abc"

would add the string “abc” to $x.

4.3 Arrays

4.3.1 Structure

Array names begin with @. Indices are integers beginning at 0.

Array elements can only be scalars, and not for instance other arrays. For example

@wt = (1,(2,3),4);

would have the same effect as

@wt = (1,2,3,4);

Since array elements are scalars, their names begin with $, not @, e.g.

@wt = (1,2,3,4);
print $wt[2]; # prints 3

Arrays are referenced for the most part as in C, but in a more flexible manner. Their lengths are not declared,
and they grow or shrink dynamically, without “warning,” i.e. the programmer does not “ask for permission”
in growing an array. For example, if the array x currently has 7 elements, i.e. ends at $x[6], then the
statement

$x[7] = 12;

changes the array length to 8. For that matter, we could have assigned to element 99 instead of to element
7, resulting in an array length of 100.

The programmer can treat an array as a queue data structure, using the Perl operations push and shift (usage
of the latter is especially common in the Perl idiom), or treat it as a stack by using push and pop. We’ll see
the details below.

An array without a name is called a list. For example, in

@x = (88,12,"abc");

we assign the array name@x to the list (88,12,”abc”). We will then have $x[0] = 88, etc.

One of the big uses of lists and arrays is in loops, e.g.:2

2C-style for loops can be done too.

5

prints out 1, 2 and 4
for $i ((1,2,4)) {

print $i, "\n";
}

The length of an array or list is obtained calling scalar(). or by simply using the array name (though not a
list) in a scalar context.

4.3.2 Operations

1 $x[0] = 15; # don’t have to warn Perl that x is an array first
2 $x[1] = 16;
3 $y = shift @x; # "output" of shift is the element shifted out
4 print $y, "\n"; # prints 15
5 print $x[0], "\n"; # prints 16
6 push(@x,9); # sets $x[1] to 9
7 print scalar(@x), "\n"; # prints 2
8 print @x, "\n"; # prints 169 (16 and 9 with no space)
9 $k = @x;
10 print $k, "\n"; # prints 2
11 @x = (); # @x will now be empty
12 print scalar(@x), "\n"; # prints 0
13 @rt = (’abc’,15,20,95);
14 delete $rt[2]; # $rt[2] now = undef
15 print "scalar(@rt) \n"; # prints 4
16 print @rt, "\n"; # prints abc1595
17 print "@rt\n"; # prints abc 15 95, due to quotes
18 print "$rt[-1]\n"; # prints 95
19 $m = @rt;
20 print $m, "\n"; # prints 4
21 ($m) = @rt; # 4-element array truncated to a 1-element array
22 print $m, "\n"; # prints abc

A useful operation is array slicing. Subsets of arrays may be accessed—“sliced”—via commas and a ..
range operator. For example:

@z = (5,12,13,125);
@w = @z[1..3]; # @w will be (12,13,125)
@q = @z[0..1]; # @q will be (5,12)
@y = @z[0,2]; # @y will be (5,13)
@w[0,2] = @w[2,0]; # swaps elements 0 and 2
@g = @z[0,2..3]; # can mix "," and "..."
print "@g\n" # prints 0 13 125

4.4 Hashes

You can think of hashes or associative arrays as arrays indexed by strings instead of by integers. Their
names begin with %, and their elements are indexed using braces, as in

$h{"abc"} = 12;
$h{"defg"} = "San Francisco";
print $h{"abc"}, "\n"; # prints 12
print $h{"defg"}, "\n"; # prints "San Francisco"

The equivalent (and more commonly used) alternative code is

6

%h = (abc => 12,
defg => "San Francisco");

print $h{"abc"}, "\n"; # prints 12
print $h{"defg"}, "\n"; # prints "San Francisco"

In the code above, if we add the line

print %h, "\n";

the output of that statement will be

abc12defgSan Francisco

4.5 References

References are like C pointers. They are considered scalar variables, and thus have names beginning with
$. They are dereferenced by prepending the symbol for the variable type, e.g. prepending a $ for a scalar, a
@ for an array, etc.:

1 # set up a reference to a scalar
2 $r = \3; # \ means "reference to," like & means "pointer to" in C
3 # now print it; $r is a reference to a scalar, so $$r denotes that scalar
4 print $$r, "\n"; # prints 3
5

6 @x = (1,2,4,8,16);
7 $s = \@x;
8 # an array element is a scalar, so prepend a $
9 print $$s[3], "\n"; # prints 8
10 # for the whole array, prepend a @
11 print scalar(@$s), "\n"; # prints 5

In Line 4, for example, you should view $$r as $($r), meaning take the reference $r and dereference it.
Since the result of dereferencing is a scalar, we get another dollar sign on the left.

4.6 Anonymous Data

Anonymous data is somewhat analogous to data set up using malloc() in C. One sets up a data structure
without a name, and then points a reference variable to it.

A major use of anonymous data is to set up object-oriented programming, if you wish to use OOP. (Covered
in Section 10.)

Anonymous arrays use brackets instead of parentheses. (And anonymous hashes use braces.) The − >
operator is used for dereferencing.

Example:

$x will be a reference to an anonymous array, due to the brackets
$x = [5, 12, 13];
print $x->[1], "\n"; # prints 12
print @$x, "\n"; # prints 51213

7

$y will be a reference to an anonymous hash (due to braces)
$y = {name => "penelope", age=>105};
print $y->{age}, "\n"; # prints 105

Note the difference between

$x = [5, 12, 13];

and

$x = (5, 12, 13);

The former sets $x as a reference to the anonymous list [5,12,13], while the latter sets $x to the length of the
anonymous list (5,12,13). So the brackets or parentheses, as the case may be, tell the Perl interpreter what
we want.

4.7 Declaration of Variables

A variable need not be explicitly declared; its “declaration” consists of its first usage. For example, if the
statement

$x = 5;

were the first reference to $x, then this would both declare $x and assign 5 to it.

If you wish to make a separate declaration, you can do so, e.g.

$x;
...
$x = 5;

If you wish to have protection against accidentally using a variable which has not been previously defined,
say due to a misspelling, include a line

use strict;

at the top of your source code.

4.8 Scope of Variables

Variables in Perl are global by default. To make a variable local to subroutine or block, the my construct is
used. For instance,

my $x;
my $y;

8

would make the scope of $x and $y only the subroutine or block in which these statements appear.

You can also combine the above two statements, using a list:

my ($x,$y);

Other than the scope aspect, the effect ofmy is the same as if this keyword were not there. Thus for example

my $z = 3;

is the same as

my $z;
...
$z = 3;

and

my($x) = @rt;

would assign $rt[0] to $x.

Note that my does apply at the block level. This can lead to subtle bugs if you forget about it. For example,

if ($x == 2) {
my $y = 5;

}
print $y, "\n";

will print 0.

There are other scope possibilities, e.g. namespaces of packages and the local keyword.

5 Conditionals, Etc.

Nonzero values are treated as true, zero as false.

Here are the boolean condition and operator symbols:

condition numbers strings

= == eq

�= != ne

< < lt

≤ <= le

> > gt

≥ >= ge

The boolean operators are as in C, e.g. || for “or.”

If-then-else is very close to C, e.g.

9

1 if ($x == $y) {$z = 2;}
2 elsif ($x > 9) {$z = 3;}
3 else {$z = 4;}

Note that the braces can NOT be omitted in single-statement blocks.

Perl also has a popular unless construct. For example, the code

while ($line = <INFILE>) {
print $line unless $line eq "\n";

}

would print out all the nonblank lines read from the input file.

There is also a similar last if ... construct, in which one breaks out of the loop if the specified condition
holds.

6 Subroutines

6.1 Arguments, Return Values

Arguments for a subroutine are passed via an array @ . Note once again that the @ sign tells us this is an
array; we can think of the array name as being , with the @ sign then telling us it is an array.

Here are some examples:

1 # read in two numbers from the command line (note: the duality of
2 # numbers and strings in Perl means no need for atoi()!)
3 $x = $ARGV[0];
4 $y = $ARGV[1];
5 # call subroutine which finds the minimum and print the latter
6 $z = min($x,$y);
7 print $z, "\n";
8

9 sub min {
10 if ($_[0] < $_[1]) {return $_[0];}
11 else {return $_[1];}
12 }

A common Perl idiom is to have a subroutine use shift on @ to get the arguments and assign them to local
variables.

Arguments must be pass-by-value, but this small restriction is more than compensated by the facts that (a)
arguments can be references, and (b) the return value can also be a list.

Here is an example illustrating all this:

$x = $ARGV[0];
$y = $ARGV[1];
($mn,$mx) = minmax($x,$y);
print $mn, " ", $mx, "\n";

sub minmax {

10

$s = shift @_; # get first argument
$t = shift @_; # get second argument
if ($s < $t) {return ($s,$t);} # return a list
else {return ($t,$s);}

}

Or, one could use array assignment:

($s,$t) = @_

However, this won’t work for subroutines having a variable number of arguments.

Any subroutine, even if it has no return, will return the last value computed. So for instance in theminmax()
example above, it would still work even if we were to remove the two return keywords. This is a common
aspect of many scripting languages, such as the R data manipulation language and the Yacas symbolic
mathematics language.

If any of the arguments in a call are arrays, all of the arguments are flattened into one huge array, @ . For
example, in the the call to f() here,

$n = 10;
@x = (5,12,13);
f($n,@x);

$ [2] would be 12.

6.2 Some Remarks on Notation

Instead of enclosing arguments within parentheses, as in C, one can simply write them in “command-line
arguments” fashion. For example, the call

($mn,$mx) = minmax($x,$y);

can be written as

($mn,$mx) = minmax $x,$y;

In fact, we’ve been doing this in all our previous examples, in our calls to print(). This style is often clearer.
In any case, you will often encounter this in Perl code, especially in usage of Perl’s built-in functions, such
as the print() example we just mentioned.

On the other hand, if the subroutine, say x(), has no arguments make sure to use the parentheses in your call:

x();

rather than

x;

In the latter case, the Perl interpreter will treat this as the “declaration” of a variable x, not a call to x().

11

6.3 Passing Subroutines As Arguments

Older versions of Perl required that subroutines be referenced through an ampersand preceding the name,
e.g.

($mn,$mx) = &minmax $x,$y;

In some cases we must still do so, such as when we need to pass a subroutine name to a subroutine. The
reason this need arises is that we may write a packaged program which calls a user-written subroutine.

Here is an example of how to do it:

1 sub x {
2 print "this is x\n";
3 }
4

5 sub y {
6 print "this is y\n";
7 }
8

9 sub w {
10 $r = shift;
11 &$r();
12 }
13

14 w \&x; # prints "this is x"
15 w \&y; # prints "this is y"

Here w() calls r(), with the latter actually being either x() or y().

7 Confusing Defaults

In many cases, in Perl the operands for operators have defaults if they are not explicitly specified. Within a
subroutine, for example, the array of arguments @ , can be left implicit. The code

sub uuu {
$a = shift; # get first argument
...

}

will have the same effect as

sub uuu {
$a = shift @_; # get first argument
...

}

This is handy for experienced Perl programmers but a source of confusion for beginners.

Similarly,

$line = <>;

12

reads a line from the standard input (i.e. keyboard), just as the more explicit

$line = <STDIN>;

would.

A further “simplification” is that if you read in a line from STDIN but don’t assign it to anything, it is
assigned to $. For instance, consider the code

while ($line = <STDIN>) {
print "the input was $line";

}

(The user terminates his/her keyboard input via ctrl-d.)

This could be simplified to

while (<>) {
print "the input was $_";

}

In fact, if we don’t want the message “the input was,” and only want to echo the lines, then we could write

while (<>) {
print; # @_ is the default

}

Moreover, $ is the default value for many function arguments. If you don’t supply the argument, the Perl
interpreter will take it to be $. You’ll see examples of this later.

8 String Manipulation in Perl

One major category of Perl string constructs involves searching and possibly replacing strings. For example,
the following program acts like the Unix grep command, reporting all lines found in a given file which
contain a given string (the file name and the string are given on the command line):

open(INFILE,$ARGV[0]);
while ($line = <INFILE>) {

if ($line =˜ /$ARGV[1]/) {
print $line;

}
}

Here the Perl expression

($line =˜ /$ARGV[1]/)

13

checks $line for the given string, resulting in a true value if the string is found.

In this string-matching operation Perl allows many different types of regular expression conditions.3 For
example,

open(INFILE,$ARGV[0]);
while ($line = <INFILE>) {

if ($line =˜ /us[ei]/) {
print $line;

}
}

would print out all the lines in the file which contain either the string “use” or “usi”.

Substitution is another common operation. For example, the code

open(INFILE,$ARGV[0]);
while ($line = <INFILE>) {

if ($line =˜ s/abc/xyz/) {
print $line;

}
}

would cull out all lines in the file which contain the string “abc”, replace the first instance of that string in
each such line by “xyz”, and then print out those changed lines.

There are many more string operations in the Perl repertoire.

As mentioned earlier, Perl uses eq to test string equality; it uses ne to test string inequality.

A popular Perl operator is chop, which removes the last character of a string. This is typically used to
remove an end-of-line character. For example,

chop $line;

removes the last character in $line, and reassigns the result to $line.

Since chop is actually a function, and in fact one that has $ as its default argument, if $line had been read
in from STDIN, we could write the above code as

chop;

9 Perl Packages/Modules

In the spirit of modular programming, it’s good to break up our program into separate files, or packages.
Perl 5.0 specialized the packages notion to modules, and it will be the latter that will be our focus here.
Except for the top-level file (the one containing the analog of main() in C/C++), a file must have the suffix
.pm (“Perl module”) in its name and have as its first noncomment/nonblank line a package statement, named
after the file name. For example the module X.pm would begin with

3If you are a Unix user, you may be used to this notion already.

14

package X;

The files which draw upon X.pm would have a line

use X;

near the beginning.

The :: symbol is used to denote membership. For example, the expression $X::y refers to the scalar $y in
the file X.pm, while@X::z refers to the array@z in that file.

The top-level file is referred to as main from within other modules.

As you can see, packages give one a separate namespace.

Modules which are grouped together as a library are placed in the same directory, or the same directory tree.

For example, if you do network programming (see Section B), you will probably need to include a line

use IO::Socket;

in your code. Let’s look at this closely.

First, part of your Perl program’s environment is the Perl search path, in which the interpreter looks for
packages that your code uses. This path has a default value, but you can change it by using the -I option
when you invoke Perl on the command line.

In the above example, the interpreter will look in your search path for a directory IO. At that point, the
interpreter will consider two possibilities:4

• there is a file IO/Socket.pm where the package code resides, or

• there is a directory IO/Socket, within which there are various .pm files which contain the package
code

In our case here, it will be the latter situation. For example, on my Linuxmachine, the directory /usr/lib/perl5/5.8.0/IO/Socket
contains the files INET.pm and Unix.pm, and the socket code is in those files.

Again, the package keyword is needed, as well as relative path information. For instance, in our example
above, the first non-comment line of INET.pm is

package IO::Socket::INET;

Any package which contains subroutines must return a value. Typically if a subroutine does not have a
return value, one just includes a line

1;

4If you know Python or Java, you may notice that this is similar to the setup for packages in those languages.

15

at the very end, which produces a dummy return value of 1.

There are many public-domain Perl modules available in CPAN, the Comprehensive Perl Archive Network,
which is available at several sites on the Web. Moreover, the process of downloading and installing them
has been automated!

For example, suppose you wish to write (or even just run) Perl programs with Tk-based GUIs. If the Perl
Tk module is not already on your machine, just type

perl -MCPAN -e "install Tk"

to install Tk from the network. You will be asked some questions, but just taking the defaults will probably
be enough.

10 OOP in Perl

(This section requires some knowledge of OOP, e.g. from C++ or Java.)

10.1 General Mechanisms

Though object-oriented programming capability came to Perl as a belated add-on, it is done in a fairly
simple and easy-to-use (if not clean and elegant) manner. Here is an introduction, with some simple code
for a warehouse inventory program.

10.2 Overview

The following overview should be read both before and after reading the example below in Sec. 10.3, as it
won’t be fully clear until after the reader sees an example.

Note first that instead of adding a lot of new constructs when OOP was added to Perl, the Perl development
team decided to cobble together “classes” out of existing Perl constructs. So, in the following, keep in mind
that you won’t be seeing me say things like, say, “A Perl class starts with the keyword class.” Instead, we
put together various items to get the effect of classes.

So, having said that, here is the Perl “kludge” for OOP:

• A Perl class, X, consists of a package file, say X.pm.

• An instance of that class X, i.e. an object of class X, consists of an anonymous hash. The elements in
that hash are the instance variables of the class.

• Class variables are stored in freestanding variables in the package file.

• The class’ methods are subroutines in the package file. One of them will serve as the constructor of
the class.

Here is what the constructor code will consist of:

16

• We set up an anonymous hash.

• We point a reference variable to the hash.

• We perform a bless operation, which associates the hash with the class name, i.e. that package file.

The “bless” operation returns the reference, which then serves as a pointer to the object. Again, that object
is simply the hash, but now carrying the additional information that it is associated with the package/class
X.

Since the constructor will be called explicitly by the programmer, the programmer can give any name to the
constructor method for the class. It is common to name it new(), though.

Class and instance methods are not distinguished in any formal way. The methods, being subroutines, of
course have an argument vector@ , but the difference will be in the first argument:

• if the method is invoked on the class, $ [0], will point to the class

• if the method is invoked on the object, $ [0], will point to the object

The way we make this happen is through our reference to the method:

• if it is a class method, we refer to it via the class name

• if it is an instance method, we refer to it via the reference variable which points to this instance of the
class

For example, say we have a reference $r which points to an object of class X, and the class contains a
subroutine s() with a single integer argument. Then

X->s(12);

would set@ to consist of a pointer to X and the number 12, while

$r->s(12);

would set@ to consist of a pointer to the object (i.e. $r) and the number 12. Thus s() would serve as either
a class method or an instance method, according to context.

In other words, if you call a method via an object name, the Perl interpreter will prepend an additional
argument to the set of arguments you explicitly supply in the call. That additional argument will be a pointer
to the object. Readers with experience with various languages will note the similarity to this in C++ and
Java, which plays the role of an implicit extra argument, and to self in Python, in which the argument is
explicit. Here in Perl, the additional argument is explicit in the sense that it is added to the argument list@ ,
though it is not explicitly there in the call’s argument list.

If the method is called via the class name, the Perl interpreter also adds an additional argument, in this case
the class name.

Note that without the bless operation, the interpreter would not have enough information to make decisions
like this.

17

10.3 Example

First we have the fileWorker.pm:

1 package Worker;
2

3 # class variables
4 @workers = (); # set of (references to) workers
5 $lastupdate = undef; # time database was last updated
6

7 # this will be the constructor
8 sub newworker {
9 # note the repeated use of "my" to keep things local
10 my $classname = shift; # class name (Worker) is first argument
11 my ($nm,$id,$slry) = @_; # get the other arguments, name, ID and salary
12 # set up an anonymous hash and point a reference to it; our instance
13 # variables will be name, id and salary
14 my $r = {name => $nm, id => $id, salary => $slry};
15 # add this worker to the database
16 push(@workers,$r); # add $r to the array of workers
17 # set the update time
18 $lastupdate = localtime();
19 # associate the hash with this class, and return the reference
20 bless($r,$classname);
21 return $r;
22 }
23

24 # an instance method
25 sub printworker {
26 my $r = shift; # object is first argument
27 print "employee number $r->{id}, named $r->{name}, has a salary of ",
28 "$r->{salary}\n";
29 }
30

31 1; # a quirk in Perl; must include dummy return value as last line

Here is a file which uses theWorker package:

1 use Worker;
2

3 # add two workers to the database by creating two new objects
4 $w1 = Worker->newworker("Cassius",12,50000);
5 $w2 = Worker->newworker("Penelope",5,90000);
6

7 # print the workers
8 $w1->printworker;
9 $w2->printworker;
10

11 # can access the objects from outside the class
12 print $$w1{name}, "\n"; # prints "Cassius"
13 print $w2->{id}, "\n"; # prints 5
14 print "time of last update: $Worker::lastupdate\n"

11 Debugging in Perl

(Before reading this section, if you are not a veteran debugger you may wish to view the author’s debugging
slide show, at http://heather.cs.ucdavis.edu/˜matloff/debug.html.)

18

11.1 Perl’s Own Built-in Debugger

Perl has its own reasonably-good debugging tool built right in to the interpreter. One merely runs Perl with
the -d option on the command line, e.g.

perl -d x.pl

Here are some of the debugger operations:

b k set a breakpoint at line/subroutine k
b k c set a breakpoint at line/subroutine k, with boolean condition c
B k delete a breakpoint at line/subroutine k
n go to next line, skipping over subroutine calls
s go to next line, not skipping over subroutine calls
c continue until breakpoint
c k continue until line k/subroutine (one-time breakpoint)
L list all breakpoints/actions
d k delete breakpoint at line k
a k c execute Perl command ("action") c each time hit breakpoint at k
a k delete action at line k
r finish this subroutine without single-stepping
p y print y
x y examine y (nicer printing of y)
T stack trace
l list a few lines of source code
! re-do last command
H list all recent commands
!n re-do command n
h help
|c do debugger command c, but run output through pager
R attempt a restart, retaining breakpoints etc.
q quit
= set a variable to a specified value

For an example of the use of = command, the following would set the variable $z to 5:

DB <1> $z = 5

The “DB <1>” is the prompt, showing that this is the first command that we’ve given.

Note that the p command, applied to an array or hash, strings together the elements; try using x instead. For
example:

main::(u.pl:2): @u = (1,2,3);
DB<1> n

main::(u.pl:3): %v = ("abc" => 12, 8 => 3);
DB<1> n

main::(u.pl:4): $z = 0;
DB<1> p @u

123
DB<2> p %v

83abc12
DB<3> x @u

0 1
1 2
2 3

DB<4> x %v
0 8
1 3
2 ’abc’
3 12

19

The a command is very useful. E.g.

a 54 print "$x, $y\n"

would result in printing out $x and $y every time you hit the breakpoint at line 54.

11.2 GUI Debuggers

The built-in Perl debugger is certainly quite serviceable, but of course it is nicer to have a GUI through
which to use the built-in debugger. Several debuggers provide this.

If you are on a Unix system, I recommend DDD.5 By using DDD, one has the same GUI no matter whether
one is debugging C/C++, Java, Perl or Python, so that one doesn’t have to remember how to use multiple
different GUIs. DDD acts as a GUI front end to text-based debuggers for those languages.

To invoke DDD on, say, x.pl, simply type

ddd x.pl

DDD will infer that this is a Perl script by the .pl suffix, and invoke perl -d on x.pl.

One can set command-line arguments by selecting Run | Run with Arguments.

As with the use of DDD with most non-C/C++ languages, some features require some adapting. For exam-
ple, suppose one has an array@x, and then moves the mouse pointer to some instance of $x[1] in the screen.
One will get the message that $x is undefined. But there are plenty of alternatives for finding the value of
$x[1], such as:

• highlight the entire expression $x[1], then right-click on it, or

• move the mouse pointer to an instance of@x in the screen, or

• manually type

p $x[1]

in the Perl Console subwindow of DDD.

If you change your source file, update DDD by hitting File | Restart.

If you use the Eclipse IDE, there is a Perl plugin available at http://e-p-i-c.sourceforge.net/.

12 To Learn More

There are obviously a great many good books on Perl. One which I like is Perl by Example (third edition),
by Ellen Quigley.

5See the above debugging Web page URL for information.

20

There also are many books which treat various specialized aspects of Perl, such as Perl network program-
ming, Perl/Tk GUI programming and so on. The book, Programming Perl by Wall et al is on the Web,
complete with linked index, at http://www.unix.org.ua/orelly/perl/prog/index.htm.

There are a number of Perl Web pages, the “official” one being http://www.perl.com/.

If you are on a Unix system, type

man perl

which will lead you to other man pages. For example,

man perlfunc

will give you the documentation for all of Perl’s built-in functions.

CPAN, an archive of many contributed Perl modules, was discussed earlier, in Section 9.

A The Tie Operation

(This is an advanced topic, and may be skipped by the general public without loss of continuity.)

Perl’s tie operation is a built-in function, tie().6 What it does is similar to operator overloading (though def-
initely with differences). We will have what looks in our application code like an ordinary scalar variable,7

but internally the Perl interpreter will associate the variable with a reference to an instance of a class.8 The
value that the scalar seems to have in a casual look at the code will be actually be implemented as instance
variable in the class.

The class is required to have member methods named TIESCALAR(), FETCH() and STORE(), which
will have the following roles:

• TIESCALAR() is the constructor function. Its arguments are the class name and any application-
specific arguments. The code in TIESCALAR() will be application-specific, but in any case it will,
as with any class constructor, produce a reference to an anonymous hash or some other object, and
will bless that reference with the package name. Note that it is doing this on the fly, i.e. creating a
class (not just an instance of the class) dynamically. When the application program executes tie() on
a variable $x, that variable will be associated with the reference created by TIESCALAR().

• FETCH() will be called each time the scalar needs to be fetched (e.g. is on the right-hand side of
an assignment statement). There will be no arguments supplied by the programmer, but the Perl
interpreter will supply an argument consisting of the reference that this variable is associated with.
The return value will be the value of the instance variable in which we are storing our “real” data.

• STORE() will be called each time the scalar needs to be changed (e.g. is on the left-hand side of an
assignment statement). The Perl interpreter will supply the reference that this variable is associated
with as the first argument, and the programmer will supply as the second argument the value to be
stored.

6Recall that in calling Perl functions, parentheses need not surround the arguments.
7We will treat just the scalar case here, but it can also be done with an array or a hash.
8But it won’t BE the reference.

21

For instance, suppose we have applied the tie() operation to $x and $y. We might then have the code

$x = $y + 3;

This seemingly-inoccuous statement actually involves more work than meets the eye:

• The Perl interpreter sees $y on the right side, remembers that $y is actually a tied variable, and thus
calls the FETCH() in $y’s class rather than looking up the value of $y itself (whose meaning makes
sense only internally to the interpreter).

• The programmer will have written FETCH() to return the current value, say 8, that $y would seem to
contain, but which is actually the current value of an instance variable of the object ssociated with $y.

• After computing 8+3 = 11, the Perl interpreter will notice that the variable to be assigned to, $x, is
also a tied variable, so it will call the STORE() in $x’s class. The programmer will have written the
latter so that the 11 will be stored in the instance variable in the object associated with $x.

As an example, suppose we have integer variable whose value should not go outside a certain range. We
can use tie() to do runtime checks for exceeding that range. We first set up the code for the class, say
BoundedInt.pm:

1 # use of tie() to implement bounds checking on integer variables
2

3 package BoundedInt;
4

5 # TIESCALAR() is the constructor, called by tie(), with arguments being:
6 # our tied variable; the class name, ’BoundedInt’; the name of the tied
7 # variable, and the desired lower and upper bounds; return value is our
8 # tied variable, which has now become a reference
9 sub TIESCALAR {
10 my $class = @_[0]; # we’ll create a class to be named after
11 # our tied variable
12 my $r = {Name=>@_[1], Value=>0, LBd=>@_[2],UBd=>@_[3]};
13 bless $r, $class;
14 return $r;
15 }
16

17 # argument will be the tied variable’s name; return value will be stored
18 # value
19 sub FETCH {
20 my $r = shift;
21 return $r->{Value};
22 }
23

24 # arguments will be the tied variable’s name, and the value to be stored
25 sub STORE {
26 my $r = shift;
27 my $tryvalue = shift;
28 if ($tryvalue < $r->{LBd} || $tryvalue > $r->{UBd}) {
29 print "out-of-bounds value for ",$r->{Name},": "$tryvalue}, "\n";
30 }
31 else {
32 $r->{Value} = $tryvalue;
33 }
34

35 }
36

37 1;

22

Now, here is a test program:

1 use BoundedInt;
2

3 package main; # not needed, but makes it explicit that this is main
4

5 $x; # fit to be tied
6 $y; # fit to be tied
7 $z; # will not be tied
8

9 # apply tie() to create object refs $x, $y
10 tie $x,’BoundedInt’,’$x’,1,10;
11 tie $y,’BoundedInt’,’$y’,1,10;
12

13 $x = 8; # OK
14 $x = 15; # causes an error message
15 $y = 3; # OK
16 $x += $y; # causes an error message
17 print $x, "\n"; # prints 8
18 $z = $x + $y; # OK, since $z is not a "bounded" variable
19 print $z, "\n"; # prints 11
20

21 exit;

As seen above, the first two arguments to tie() must be the variable, then the class name. Further arguments
depend on the application.

As mentioned, a tied variable is only associated with a reference to the class instance. If you need the
reference itself (say for debugging), you can used the tied() function. You give it the tied variable, and it
returns a reference to the class instance. In the example above, say, you could add a line

$objref = tied $x;

after the variable $x has been tied, and then make use of it, e.g. while debugging. Here is a sample session
using Perl’s built-in debugger.9

DB<1> l
5==> $x; # will be tied
6: $y; # will be tied
7: $z; # will not be tied
8
9 # apply tie() to create object refs $x, $y
10: tie $x,’BoundedInt’,’$x’,1,10;
11: tie $y,’BoundedInt’,’$y’,1,10;
12: $objref = tied $x;
13
14: $x = 8; # OK

DB<1> b 15
DB<2> c

main::(testtie.pl:15): $x = 15; # causes an error message
DB<2> %h = %$objref

DB<3> p %h
LBd1Value8TieVarName$xUBd10

DB<4> p $h{Value}
8

9The debugger is described in Section 11.

23

By the way, note that since functions like FETCH() are called when your program accesses tied variables,
if you are executed the program within a debugging tool, you can get into those functions via a “step”
operation rather than “next.”

B Networking in Perl

(This section requires an elementary knowledge of TCP/IP programming. The section may be skipped with-
out compromising understanding of the remaining material. For a quick but rather thorough introduction to
networks and TCP/IP, see http://heather.cs.ucdavis.edu/˜matloff/Networks/Intro/
NetIntro.pdf.)

Perl includes analogs of most of the TCP/IP calls one is accustomed to using from C, including select().
The arguments to the calls are similar, though Perl, being at a higher level than C, makes many of these calls
more convenient.

Here is an example of code which a client may use to connect to a server:

1 use IO::Socket;
2

3 # get server and port from command line
4 my $srvrip = $ARGV[0];
5 my $port = $ARGV[1];
6 my $svrskt = new IO::Socket::INET(PeerAddr=>$srvrip,
7 PeerPort=>$port, Proto=>’tcp’);

Nothing more need be done. The call to new() incorporates what in C would be calls to socket(), connect()
and so on.

Assume that the data is line-oriented. Then the client would send a string $x (which, say, did not already
have an end-of-line character) as

$x = $x . "\n"; # . is Perl’s string-concatenate operator
print $svrskt $x;

and would read a line, say $y, as

$y = <$svrskt>;

The server would have code something like

1 $port = $ARGV[0];
2 $listensocket = IO::Socket::INET->new(Proto=>’tcp’, LocalPort=>$port,
3 Listen=>1, Reuse=>1);
4 ...
5 $sock = $listensocket->accept();
6 $z = <$sock>;
7 ... # program creates some variable $w from $z
8 print $sock $w, "\n";

24

