Note: you can find all slides of this tutorial under:

http://www.cs.queensu.ca/ ttang/advunix.pdf

The introductory Unix tutorial can be found under:

http://www.cs.queensu.ca/ ttang/unix.pdf

Advanced Unix Tutorial

In this tutorial, you will learn about:
e Common Unix tools (grep, sed, auk, tr, etc.)

e Fnvironment variables
e Csh/tcsh basics
e Csh/tcsh Shell scripts

More Useful Commands

grep/egrep - searches lines for patterns using regular expressions.
grep |options] [pattern]| [file ...]
E.g. To print all lines that contain printf in all *.c files:
grep printf *.c
Useful options:
-i Case-insensitive search
-v Reverse search (print all lines that do not contain the pattern)
-n Add line number to the lines found

E.g. To print all lines that do not contain system (case-insensitive)

In *.java:

grep —1iv system *.java

Regular Expressions — a string that represents multiple instances

It can be used along with egrep to search for pattern.

Examples: egrep "alx-z]c" filel file2
Pattern Matches
a.c alany single character]c, e.g. abc, alc, a c.
alxyzlc or alx-z]c | axc, ayc, and azc only
al~xyzlc alany single character but x, y, or z]c
abxc al0 or more blc, e.g. ac, abc, abbbc
ab+c all or more blc, e.g. abc, abbbc
“abc abc only at the beginning of a line
abc$ abc only at the end of a line
a(bclde)f abcf and adef
myarray\[.+\] myarray Lanything that has 1 or more character]

cut — select a list of columns or fields from one or more files

Fields and columns start at 1.

Example: (myfile is a file of abcdefghijklmnopqrstuvwxyz)
e To see only the second and forth character of file myfile:
cut -c2,4 myfile (output = bd)
e For characters from 1st to 3rd, 10th to 12th, 24th to the end:
cut -c-3,10-12,24- myfile (output = abcjklxyz)
e Cut can also display fields split by a delimiter:
echo "12#34#567#8" | cut -d"#" -f2-3 (= 34#56)

e Find out who is logged on, but list only usernames:

who | cut -4 " " -f1

tr - translate characters

tr copies standard input to standard output, substituting or
deleting specified characters, for example:

tr ABCDEFGHIJKLMNOPQRSTUVWXZ abcdefghijklmnopqrstuvwxyz < filel > file2
or
tr A-Z a-z < filel > file2
creates file2 as a copy of filel, with all uppercase letters

translated to the corresponding lowercase ones.

tr strl str2 translates strl chars to the corresponding str2

tr -s strl str2 | squeezes repeated chars in strl to 1 char

tr -d stril removes all chars in stri

There are more sophisticated uses of tr which are very useful, e.g.,
tr -s ’[:blank:]’ ’[\012*]’ changes each set of whitespaces to
a single newline (\012 is newline in octal).

The Shell

e the user interface of Unix is the shell

e modern UNIX workstations offer GUIs to enhance the user

interface

e within a window the shell remains the control center

e several shells are available: sh (Bourne Shell), ksh (Korn Shell),
csh, and tcsh

e we will be looking at tcsh (tcsh is an enhanced version of csh),
and we will use the word csh and tcsh interchangeably

Environment Variables

Unix keeps user-defined shell environment parameters (user

info and preferences) in environment variables
Environment variables constitute the environment of the shell

HOME — variable representing your home directory, e.g.,

printenv HOME or echo $HOME shows your home directory

PATH — the list of directories that form the command search

path, e.g.
setenv PATH $HOME/bin:$PATH (add to .cshrec file)

tells the shell to look in the users home directory under the bin

directory for commands

Use printenv to see your environment variables

Environment Variables and Shell Variables

e Shell variables are variables for a particular shell. Unlike

environment variables, shell variables won’t be inherited to

shells opened by the current shell

e Usually, environment variable names consist of uppercase

letters, and shell variables consist of lowercase letters

Environment Variables

Shell Variables

Assignment

or define

setenv name content

E.g. setenv FOO bar

set name=content

E.g. set foo=bar

Remove

unsetenv name

unset name/pattern

e Trying to access an undefined variables (except for unset) will

give you an error.

Environment and Shell Variables (cont’d)

e Shell variables can have arrays of 1D. Parentheses must be

used to enclose the contents, which are separated by spaces:

set myarray=(this is an array)

e Use square brackets to access element(s) of the array (1-based)

e To see all defined shell variables, use set

Some environment /shell variables defined automatically:

$PATH or $path

Directories to search for commands

$HOME or $home

User’s home directory

$noclobber If defined, prevents redirections (>) to overwrite files
$prompt Control the appearance of the prompt
$status The exit value of the previous command

Variable Operation Description

$name[1] Access the it" element
E.g. echo $myarray[2] Outputs is

E.g. set $myarray[2]=was | Changes is to was

$name [i-7] Access the it? thru j*"element

E.g. echo $myarray[2-3] Output was an

E.g. echo $myarray[2-] Output was an array

$#name (shell var only) Show the number of elements
$#myarray Output 4

$?7name Check if variable name is defined
E.g. echo $?myarray Output 1

shift name (shell var only) | Remove the first element of an array

E.g. shift myarray $myarray becomes (was an array)

10

Shell Variables — Arithmetic Operations

e Arithmetic operation must be performed using @:
@ var=expr (note the space after @)

Q@ var[n]=expr

e Only operations involving arithmetic needs @, for other

operations use set
e Integers only (no floating point numbers)

Examples:

@i = 10 (same as set i=10)

@ j = $#path / 2 (note the spaces around /)
Q@ myintarrayl[$j] = $j + 4

@ x += 3

Q@ i++

11

Arithmetic and bitwise logical operators

! not

+ | plus

& | bitwise and

- | minus

| bitwise or

x| multiplication

bitwise exclusive-or

/ | division
<< | left-shift

% | modulus

>> | right-shift

Note that an operator symbol must be surrounded by space:

@ a=%$b % $c

12

Shell Scripting Intro

e The shell is not only a command interpreter, it also defines a

simple programming language
e A program written in this language is called a shell script

e Shell scripts can save you a lot of time if you find yourself

repeating commands over and over again
e Shell scripts are like batch files in DOS

e You can also type out all lines in a shell script at the prompt to
do the same thing as the script

13

Shell Script Basics

e A shell script file starts with a line like this:
#!/usr/local/bin/tcsh
It indicates which command is used to interpret this script

e (Consists of lines of commands
e Comments are preceded by #

e If the execution of a script results in an error, script execution
is aborted if the command is built-in or skipped if the offending

command isn’t built-in

e A shell script file must have its executable flag set in order to
be run directly:
chmod u+x myshellscript (enable the executable flag)
myshellscript (execute this script if it is in the path)

14

Passing Arguments

e Arguments can be passed to a tcsh script:
./myshellscript al b2 c3

e Arguments are stored in the array variable $argv

e Alternatively, $1 represents the first argument, $2 the second

etc.
e $x is equivalent to $argv (which is a1l b2 ¢3)

e $0 is the command that runs the current script file (which is

./myshellscript)

e $argv[0] is undefined

15

foreach loop

foreach allows one to execute a series of lines of commands for

each of the element in a list:

foreach index_variable_name (element element ...)

command (can be break or continue)

end

#!/bin/csh
list all files end with .java and .c
foreach file (*.java *.c)

echo $file

end

16

1f statement

if (condition) then

else if (condition) then

else

endif

Examples of conditions (also called expressions)

($1 == $2) | if the first arg is same as the second arg
1($1 > $2) | not ($1 > $2)

(-f file) | if file is a file (not directory)

(-d file) if file is a directory

17

Relational Operators

== | equal

= | not equal

> | numerical greater than

< numerical less than

>= | numerical greater than or equal to

<= | numerical less than or equal to

=~ | string match (right side can be a pattern)

not a string match

Example
if ($1 =~ m*) echo "$1 starts with m"

18

Expressions

Logical Operators:

| | | logical or

&& | logical and

! logical not

Some file conditions, e.g. if (-r filename)

(-r filename) | True if filename is readable

(-w filename) | True if filename is writable

(-x filename) | True if filename is executable

(-e filename) | True if filename exists

(-o filename) | True if the user owns filename

19

#!/bin/csh
Finds the location of a given command in the path.
Simulate the "which" command.
if ($#argv != 1) then
echo "Usage: $0 command"
exit 1
endif
foreach dir ($path)
set file=$dir/$1
if (-f $file && -x $file) then
echo "Found: $file"

exit O
endif
end
echo $1 not found
exit 1

20

switch statement

e similar to C or Java switch

Example

#!/bin/csh
append $1 to $2 or standard input to $1
switch ($#argv)

case 1:
cat >> $argv[i]
breaksw
case 2:
cat >> $argv[2] < $argv[i]
breaksw
default:
echo ’usage: append [from] to ’
endsw

21

while loop

e similar to while loop in C or Java
e break and continue can be used

#!/bin/csh

Generate output files from input files

Good for testing your program

set max=3

set i=1

while ($i <= $max)
set infile=myInputFile.$i
set outfile=myOutputFile.$i
echo "To run myProgram with $infile, output to $outfile"
java myProgram < $infile >&! $outfile # force overwrite
Q@ i++

end

22

Quotes

e There are three kinds of quotes: single ’, double ", and back °
e Single and double quotes can be used to enclose a string

e Single quotes don’t expand the string inside (i.e. leave the
string as it is), double quotes do (i.e. return the contents of
variables):
echo ’$user’ outputs $user

echo "$user" outputs ttang

e Backquotes evaluate the string enclosed:
echo "the command more is at ‘which more‘" outputs

the command more is at /usr/bin/more

23

awk and sed

e They are standard Unix commands for text processing that can

have scripts
e Nowadays people usually use Perl for text processing

e They are handy for simple operations:
awk ’{print $1$3, $NF} myfile’

prints the 1st and 3rd (no space in between), and the last field

of each line in myfile; and
sed "s/foo/bar/g;s/if/in case/" myfile

changes all occurrences of “foo” to “bar”, and only the first

occurrence of “if” to “in case”

24

Example - Try to simulate move in DOS

#!/bin/csh
if ($#argv < 3) then
echo "Usage: $0 search_pattern replace_pattern file ..."
echo "Example: $0 ’\.txt"’$’"’> ’\.doc’ "’x*.txt’
exit
endif
set search=8§1
set replace=$2
foreach file ($argv[3-])
set newname=‘echo $file | sed "s/$search/$replace/"
if ($file !'= $newname) then
echo "Changing $file to $newname"
mv $file $newname
endif
end

25

Alias Substitution

e Alias allows you to redefine existing command name with a

name of your own. Examples:

alias h history

use h as an abbreviation of history

alias dir 1s

use dir as an abbreviation of 1s

alias 1s ’1ls -F’

the switch -F will be used whenever 1s is used

alias rm ’rm -1’

confirmation needed before removing a file

e Use unalias to remove an alias, e.g., unalias 1s

e Use a backslash before an aliased command to temporarily

unalias that command: \rm * will delete all files in the current

directory without asking (dangerous, make sure you know what

you are doing)

e Aliases are usually put in the file “/.cshrc

26

Configuring your tcsh

e The file “/.cshrc contains your configuration of csh/tcsh

e Some content of .cshrc may be depended to the system
configuration. Your current .cshrc is probably written by your

system administrator.

e You can put your own configuration in some file, say

~/.mycshrc, and put the line:
source ~/.mycshrc

at the end of .cshrc to tell csh to load your configuration file

e The command source can also be used in the shell

27

Final Words

e We have introduced the basics of Unix and shell programming

e For serious shell programming, C shell is not the best choice:
— for instance, C shell does not have subroutines

— we suggest Bourne shell (sh/bash), or Korn shell (ksh)

e For serious text processing, Perl is the language to use

— it is heavily used in WWW programming

28

